Sains Malaysiana 48(10)(2019): 2221–2227
http://dx.doi.org/10.17576/jsm-2019-4810-18
Effect of P-Hydroxycinnamic Acid in
Mice Model of Cerebral Ischemia-Reperfusion Injury
(Kesan Asid P-Hidroksisinamik dalam Model
Tikus dengan Kecederaan Serebrum Iskemia-Reperfusi)
ROMGASE SAKAMULA,
CHANIKARN
SAKDAPITAK
& WACHIRYAH THONG-ASA*
Physiology division, Animal Toxicology and Physiology, Specialty
Research Unit (ATPSRU), Department of Zoology, Faculty of Science,
Kasetsart University, Bangkok 10900, Thailand
Diserahkan: 3 April 2019/Diterima:
8 Ogos 2019
ABSTRACT
Multiple
pathomechanisms of cerebral ischemia reperfusion (I/R) injuries
can be ameliorated by certain high-potential pharmaceutical substances.
In the present study, we investigated the acute effect of p-hydroxycinnamic
(pHCA)
acid against cerebral I/R injury in mice. Thirty male ICR mice
were divided into Sham, Control-I/R, and pHCA-I/R groups.
The pHCA 100 mg/kg and the vehicle were given 30 min before
I/R induction. Thirty-minute bilateral common carotid artery occlusion
followed by 45-min reperfusion was performed on the Control-I/R
and pHCA-I/R groups. Brains were collected for biochemical
analysis, infarction and histological study of the cerebral cortex
and corpus callosum (CC). The results showed that I/R
induction significantly induced biochemical changes (p<0.05)
along with the increase of brain infarction (p<0.05), percentage
of degeneration in cerebral cortex (p<0.05) and decrease of CC white
matter density (p<0.05). Pretreatment with pHCA significantly
reduced MDA
(p<0.05), brain infarction (p<0.05), cerebral
cortex neuronal degeneration (p<0.05) and prevented the reduction
of white matter density in the CC (p<0.05). The present study concluded
that pretreatment with pHCA helps prevent cerebral I/R injury
by amelioration of lipid peroxidation, white matter damage and neuronal
degeneration.
Keywords:
Brain ischemia; infarction; oxidative stress; p-hydroxycinnamic
acid; white matter
ABSTRAK
Pelbagai
patologi mekanisme kecederaan serebrum iskemia-reperfusi (I/R) boleh
diperbaikkan oleh beberapa bahan farmaseutik berpotensi tinggi.
Dalam penyelidikan ini, kami mengkaji kesan akut p-hidroksisinamik
(pHCA)
terhadap kecederaan I/R serebrum pada tikus. Tiga puluh tikus ICR jantan
dibahagikan kepada Sham, kawalan-I/R, dan kumpulan pHCA-I/R.
PHCA
100 mg/kg dan pembawa diberikan 30 min sebelum induksi
I/R. Oklusi arteri karotid selama 12 min diikuti oleh reperfusi
45 min dilakukan pada kumpulan Kawalan-I/R dan pHCA-I/R.
Tisu otak dikumpulkan untuk analisis biokimia, infarksi dan kajian
histologi korteks serebrum dan korpus kalosum (CC). Keputusan menunjukkan bahawa induksi I/R menunjukkan
perubahan biokimia yang ketara (p<0.05) dengan peningkatan infarksi
otak (p<0.05), peratusan degenerasi dalam korteks serebrum (p<0.05).
Pra-rawatan dengan pHCA mengurangkan MDA (p<0.05),
infarksi otak (p<0.05), degenerasi neuron korteks serebrum (p<0.05)
dan menghalang pengurangan kepadatan bahan putih otak di CC (p<0.05).
Kajian ini menyimpulkan bahawa prarawatan dengan pHCA membantu
mencegah kecederaan otak I/R dengan memperbaik peroksidasi lipid,
kerosakan bahan putih otak dan degenerasi neuron.
Kata kunci: Asid p-hidroksisinamik;
bahan putih otak; infarksi; iskemia otak; tekanan oksidatif
RUJUKAN
Abdel-Wahab, M.H., El-Mahdy, M.A., Abd-Ellah, M.F., Helal, G.K.,
Khalifa, F. & Hamada, F.M. 2003. Influence of p-coumaric acid
on doxorubicin-induced oxidative stress in rat’s heart. Pharmacol.
Res. 48(5): 461-465.
Amalan, V., Natesan, V., Dhananjayan, I. & Arumugam, R. 2016.
Antidiabetic and antihyperlipidemic activity of p-coumaric
acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach.
Biomedicine & Pharmacotherapy 84: 230-236.
Chaitanya, G.V. & Babu, P.P. 2008. Activation of calpain, cathepsin-b
and caspase-3 during transient focal cerebral ischemia in rat model.
Neurochem. Res. 33(11): 2178-2186.
Elmore, S.A., Dixon, D., Hailey, J.R., Harada, T., Herbert, R.A.,
Maronpot, R.R., Nolte, T., Rehg, J.E., Rittinghausen, S., Rosol,
T.J., Satoh, H., Vidal, J.D., Willard-Mack, C.L. & Creasy, D.M.
2016. Recommendations from the INHAND Apoptosis/Necrosis Working
Group. Toxicol. Pathol. 44(2): 173-188.
Fentem, J.H. & Fry, J.R. 1992. Metabolism of coumarin by rat,
gerbil and human liver microsomes. Xenobiotica 22: 357-367.
Fishbein, M.C., Meerbaum, S., Rit, J., Lando, U., Kanmatsuse, K.,
Mercier, J.C., Corday, E., & Ganz, W. 1981. Early phase acute
myocardial infarct size quantification: Validation of the triphenyl
tetrazolium chloride tissue enzyme staining technique. Am. Heart
J. 101(5): 593-600.
Guven, M., Aras, A.B., Akman, T., Sen, H.M., Ozkan, A., Salis, O.,
Sehitoglu, I., Kalkan, Y., Silan, C., Deniz, M. & Cosar, M.
2015. Neuroprotective effect of p-coumaric acid in rat model of
embolic cerebral ischemia. Iran J. Basic. Med. Sci. 18(4):
356-363.
Hadwan, M.H. & Abed, H.N. 2016. Data supporting the spectrophotometric
method for the estimation of catalase activity. Data in Brief
6: 194-199.
Hou, S.T. & MacManus, J.P. 2002. Molecular mechanisms of cerebral
ischemia-induced neuronal death. International Review of Cytology
221: 93-148.
Kalogeris, T., Baines, C.P., Krenz, M. & Korthuis, R.J. 2012.
Chapter Six - Cell biology of ischemia/reperfusion injury. International
Review of Cell and Molecular Biology 298: 229-317.
Konishi, Y., Hitomi, Y. & Yoshioka, E. 2004. Intestinal absorption
of p-coumaric and gallic acids in rats after oral administration.
Journal of Agricultural and Food Chemistry 52: 2527-2532.
Ladecola, C. & Anrather, J. 2011. Stroke research at a crossroad:
Asking the brain for directions. Nature Neuroscience 14(11):
1363-1368.
Lake, B.G. 1999. Coumarin metabolism, toxicity and carcinogenicity:
Relevance for human risk assessment. Food and Chemical Toxicology
37: 423-453.
Lee, J.M., Grabb, M.C., Zipfel, G.J. & Choi, D.W. 2000. Brain
tissue responses to ischemia. The Journal of Clinical Investigation
106: 723-731.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. 1951.
Protein measurement with the Folin phenol reagent. J. Biol. Chem.
193(1): 265-275.
Luo, Y., Ma, H., Zhou, J.J., Li, L., Chen, S.R., Zhang, J., Chen,
L. & Pan, H.L. 2018. Focal cerebral ischemia and reperfusion
induce brain injury through α2δ-1-bound NMDA receptors.
Stroke 49: 2464-2472.
Martin, L.J., Al-Abdulla, N.A., Brambrink, A.M., Kirsch, J.R., Sieber,
F.E. & Portera-Cailliau, C. 1998. Neurodegeneration in excitotoxicity,
global cerebral ischemia, and target deprivation: A perspective
on the contributions of apoptosis and necrosis. Brain Research
Bulletin 46(4): 281-309.
Mehta, S.L., Kumari, S., Mendelev, N. & Li, P.A. 2012. Selenium
preserves mitochondrial function, stimulates mitochondrial biogenesis,
and reduces infarct volume after focal cerebral ischemia. BMC
Neurosci. 13: 79.
Mehta, S.L., Manhas, N. & Raghubir, R. 2007. Molecular targets
in cerebral ischemia for developing novel therapeutics. Brain
Research Reviews 54(1): 34-66.
Mendelow, A.D., Graham, D.I., McCulloch, J. & Mohamed, A.A. 1984.
The distribution of ischaemic damage and cerebral blood flow after
unilateral carotid occlusion and hypotension in the rat. Stroke
15(4): 704-710.
Pan, J., Konstas, A.A., Bateman, B., Ortolano, G.A. & Pile- Spellman,
J. 2007. Reperfusion injury following cerebral ischemia: Pathophysiology,
MR imaging, and potential therapies. Neuroradiology 49(2):
93-102.
Paxinos, G. & Franklin, K. 2008. The Mouse Brain in Stereotaxic
Coordinates. 3rd ed. New York: Academic Press. p. 360.
Pei, K., Ou, J., Huang, J. & Ou, S. 2015. p-Coumaric acid and
its conjugates: Dietary sources, pharmacokinetic properties and
biological activities. J. Sci. Food Agric. 96(9): 2952-2962.
Phillis, J.W., O’Regan, M.H. & Donard, S.D. 2002. Energy utilization
in the ischemic/reperfused brain. International Review of Neurobiology
51: 377-414.
Raghavendra, M., Rituparna, M., Shafalika, K., Anshuman, T., Sumit,
M. & Acharya, S.B. 2009. Role of Centella asiatica on
cerebral post-ischemic reperfusion and long-term hypoperfusion in
rats. Int. J. Green Pharm. 3(2): 88-96.
Shuaib, A. & Breker-Klassen, M.M. 1997. Inhibitory mechanisms
in cerebral ischemia: A brief review. Neuroscience & Biobehavioral
Reviews 21(2): 219-226.
Small, D.L., Morley, P. & Buchan, A.M. 1999. Biology of ischemic
cerebral cell death. Progress in Cardiovascular Diseases 42(3):
185-207.
Spare, P.D. 1964. A stable murexide reagent for the estimation of
calcium in micro quantities of serum. Clinical Chemistry 10(8):
726-729.
Ueda, H. & Fujita, R. 2004. Cell death mode switch from necrosis
to apoptosis in brain. Biol. Pharm. Bull. 27(7): 950-955.
Wachiryah Thong-asa & Kanokwan Tilokskulchai. 2014. Neuronal
damage of the dorsal hippocampus induced by long-term right common
carotid artery occlusion in rats. Iran J. Basic Med. Sci. 17(3):
220-226.
Wachiryah Thong-asa, Panas Tumkiratiwong, Vasakorn Bullangpoti, Kasem
Kongnirundonsuk & Kanokwan Tilokskulchai. 2017. Tiliacora
triandra (Colebr.) Diels leaf extract enhances spatial learning
and learning flexibility, and prevents dentate gyrus neuronal damage
induced by cerebral ischemia/reperfusion injury in mice. Avicenna
Journal of Phytomedicine 7(5): 389-400.
Wachiryah Thong-asa, Kanokwan Tilokskulchai, Supin Chompoopong, Mayuree
Hantrakul & Tantisira. 2015. Early onset effects of mild chronic
cerebral hypoperfusion on the dorsal hippocampus and white matter
areas: The use of male Sprague-Dawley rats as a UCO model. Journal
of Neurological Sciences 32(1): 030-039.
Wakita, H., Tomimoto, H., Akiguchi, I., Matsuo, A., Lin, J.X., Ihara,
M. & McGeer, P.L. 2002. Axonal damage and demyelination in the
white matter after chronic cerebral hypoperfusion in the rat. Brain
Res. 924(1): 63-70.
Wang, Y., Liu, G., Hong, D., Chen, F., Ji, X. & Cao, G. 2016.
White matter injury in ischemic stroke. Prog. Neurobiol. 141:
45-60.
White, B.C., Sullivan, J.M., DeGracia, D.J., O’ Neil, B.J., Neumar,
R.W., Grossman, L.I., Rafols, J.A. & Krause, G.S. 2000. Brain
ischemia and reperfusion: Molecular mechanisms of neuronal injury.
Journal of the Neurological Sciences 179: 1-33.
Yoon, J.H., Youn, K., Ho, C.T., Karwe, M.V., Jeong, W.S. & Jun,
M. 2014. p-Coumaric acid and ursolic acid from Corni fructus
attenuated beta-amyloid (25-35)-induced toxicity through regulation
of the NF-kappaB signaling pathway in PC12 cells. J. Agric. Food
Chem. 62(21): 4911-4916.
*Pengarang untuk surat-menyurat;
email: fsciwyth@ku.ac.th
|