| Sains Malaysiana 48(11)(2019): 2565–2574   http://dx.doi.org/10.17576/jsm-2019-4811-26 
                
             
           Prediction of Soil Erosion 
              in Pansoon Sub-basin, Malaysia using RUSLE integrated 
              in Geographical Information System  (Ramalan Hakisan Tanah 
              di Sub-lembangan Pansoon menggunakan Integrasi RUSLE 
              dan Sistem Maklumat Geografi)   
             
           NOOR FADZILAH YUSOF, TUKIMAT LIHAN*, WAN MOHD RAZI IDRIS, ZULFAHMI ALI RAHMAN, MUZZNEENA AHMAD MUSTAPHA
  & MOHD. ABDUL WAHAB YUSOF
  
           
             
           Center
            for Earth Sciences and Environment, Faculty of Science and Technology, Universiti
            Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           Diserahkan:
            10 April 2019/Diterima: 15 Ogos 2019
            
           
             
           ABSTRACT
            
           Water-borne erosion problem 
              is one of the environmental problems faced globally particularly 
              in developing countries. The objective of this study was to estimate 
              the erosion rate at the Pansoon sub-basin using combination of conventional 
              approach and remote sensing technology. Pansoon sub-basin is the 
              upper stream of Langat watershed, Malaysia located in the mountainous 
              area dominated by steep slopes and various type of soils which are 
              the important factors contributed to soil erosion. The Revised Universal 
              Soil Loss Equation (RUSLE) 
              integrated in a Geographical Information System used to predict 
              the soil erosion rate and spatially maps its distribution using 
              rainfall, soil series and topography data to generate rainfall erosivity 
              factor, soil erodibility factor and topography factor. Land use 
              map was used to produce coverage and management practice factor. 
              The result shows that 66% (7433 ha) of the Pansoon sub-basin is 
              classified at very low risk, 22% of low risk (2433 ha), 5% of moderate 
              (582 ha), 2% of the area with high risk (251 ha) and 5% of very 
              high risk of erosion (549 ha). Pansoon sub-basin is prone to soil 
              erosion problem on the southwest region may due to soil erodibility 
              factor, slope length and slope steepness. Accuracy assessment was 
              obtained between prediction model and field observation data (p=0.97) 
              which means the RUSLE 
              approach integrated in GIS is suitable to be used to 
              predict and assessing the soil erosion rate. In conclusion, the 
              prediction of soil erosion using RUSLE in GIS can 
              be accurately assessed with the combination of field observation 
              data.   
             
           Keywords: GIS;
            Langat; Pansoon; RUSLE; soil erosion
  
           
             
           ABSTRAK
            
           Masalah hakisan yang disebabkan oleh air merupakan salah satu masalah 
              alam sekitar yang dihadapi di seluruh dunia terutamanya di negara 
              membangun. Objektif kajian ini adalah untuk menganggarkan kadar 
              hakisan di sub-lembangan Pansoon menggunakan gabungan pendekatan 
              konvensional dan teknologi penderiaan jauh. Sub-lembangan Pansoon 
              adalah kawasan hulu lembangan Langat, Malaysia yang terletak di 
              kawasan pergunungan yang dikelilingi oleh cerun curam dan beberapa 
              jenis tanih yang merupakan faktor penting yang menyumbang kepada 
              hakisan tanah. Semakan Semula Persamaan Kehilangan Tanih Universal 
              (RUSLE) yang diintegrasikan dalam Sistem Maklumat Geografi 
              digunakan untuk meramal kadar hakisan tanah dan peta ruangan dengan 
              menggunakan data hujan, siri tanih dan topografi bagi menghasilkan 
              faktor erosiviti hujan, faktor kebolehhakisan tanah dan faktor topografi. 
              Peta guna tanah digunakan bagi menghasilkan faktor liputan dan amalan 
              pengurusan. Hasil kajian mendapati 66% (7433 ha) daripada sub-lembangan 
              Pansoon dikelaskan sebagai berisiko sangat rendah, 22% daripadanya 
              adalah berisiko rendah (2433 ha), 5% daripadanya adalah sederhana 
              (582 ha), 2% (251 ha) dan 5% daripadanya adalah hakisan yang sangat 
              tinggi (549 ha). Sub-lembangan Pansoon terdedah kepada masalah hakisan 
              tanah di wilayah barat daya mungkin disebabkan oleh faktor kebolehhakisan 
              tanah, panjang cerun dan kecerunan. Kajian ketepatan diperoleh antara 
              model ramalan dan data kerja lapangan (p=0.97) yang bermaksud pendekatan 
              integrasi RUSLE dan 
              GIS 
              sesuai digunakan untuk meramal dan mentaksir kadar 
              hakisan tanah. Kesimpulannya, ramalan hakisan tanah menggunakan 
              RUSLE dalam 
              GIS 
              dapat dinilai secara tepat dengan gabungan data pemerhatian 
              lapangan.   Kata kunci: GIS; hakisan tanih; Langat; Pansoon; RUSLE
            
           RUJUKAN
            
           Abdulkareem, J.H., Biswajeet, P., Wan Nor Azmin, S. & Nor
            Rohaizah, J. 2017. Prediction of spatial soil loss impacted by long-term
            land-use/land-cover change in a tropical watershed. Geoscience Frontiers 10(2):
            389-403.
  
           Alfarooq, O.B., Marlia, M.H. & Mahmood, J.A. 2017. A study on 
              water quality from Langat river, Selangor. Acta Scientifica Malaysia 
              (ASM) 1(2): 1-4.   Anees, M.T., Abdullah, K., Nawawi, M.N.M., Norulaini, N.A.N.,
            Syakir, M.I. & Omar, A.K.M. 2018. Soil erosion analysis by RUSLE and
            sediment yield models using remote sensing and GIS in Kelantan state,
            Peninsular Malaysia. Soil Research 56(4): 356-372.
  
           Asmamaw, L.B. & Mohammed, A.A. 2019. Identification of soil
            erosion hotspot areas for sustainable land management in the Gerado catchment,
            North-eastern Ethiopia. Remote Sensing Applications: Society and Environment 13: 306-317.
  
           Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E.,
            Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V.,
            Bagarello, V., Oost, K.V., Montanarella, L. & Panagos, P. 2017. An
            assessment of the global impact of 21st century land use change on soil
            erosion. Nature Communications 8(1): 2013.
  
           DID, D.o.I.a.D. 2010. Guideline for Erosion and Sediment
            Control in Malaysia. Kuala Lumpur.
  
           Fawaz, A.B., Mohammad, S.O. & Muhammad Barzani, G. 2013. Water
            quality assessment of the Semenyih River, Selangor, Malaysia. Journal of
              Chemistry 2013: Article ID 871056.
  
           Fayas, C.M., Abeysingha, N.S., Nirmanee, K.G.S., Samaratunga, D.
  & Mallawatantri, A. 2019. Soil loss estimation using RUSLE model to
            prioritize erosion control in KELANI river basin in Sri Lanka. International
              Soil and Water Conservation Research 7(2): 130-137.
  
           Feng, X., Wang, Y., Chen, L., Fu, B. & Bai, G. 2010. Modeling
            soil erosion and its response to land-use change in hilly catchments of the
            Chinese Loess Plateau. Geomorphology 118(3): 239-248.
  
           Ghani, A.H.A., Tukimat, L., Sahibin, A.R., Musthapha, M.A., Wan
            Mohd Razi, I. & Zulfahmi, A.R. 2013. Prediction of sedimentation using
            integration of RS, RUSLE Model and GIS in Cameron Highlands, Pahang, Malaysia. AIP
              Conference Proceedings. pp. 543-548.
  
           Hafizan, J., Sharifuddin, M.Z., Mohd Kamil, Y., Tengku Hanidza,
            T.I., Mohd Armi, A.S., Mohd Ekhwan, T. & Mazlin, M. 2011. Spatial water
            quality assessment of Langat River Basin (Malaysia) using environmetric
            techniques. Environmental Monitoring and Assessment 173: 625-641.
  
           Jazouli, A.E., Barakat, A., Khellouk, R., Rais, J. & Baghdadi,
            M.E. 2019. Remote sensing and GIS techniques for prediction of land use land
            cover change effects on soil erosion in the high basin of the Oum Er Rbia River
            (Morocco). Remote Sensing Applications: Society and Environment 13:
            361-374.
  
           Kamaludin, H., Lihan, T., Ali Rahman, Z., Mustapha, M.A., Idris,
            W.M.R. & Rahim, S.A. 2013. Integration of remote sensing, RUSLE and GIS to
            model potential soil loss and sediment yield (SY). Hydrology and Earth
              System Sciences Discussion 2013(10): 4567-4596.
  
           Khosrokhani, M. &
            Pradhan, B. 2014. Spatio-temporal assessment of soil erosion at Kuala Lumpur
            metropolitan city using remote sensing data and GIS. Geomatics, Natural
              Hazards and Risk 5(3): 252-270.
  
           Lihan, T., Fatin Khodri,
            N., Ahmad Mustapha, M., Ali Rahman, Z. & Mohd Razi Idris, W. 2018. Potensi
            hakisan tanih di Lembangan Sungai Bilut, Raub, Pahang menggunakan integrasi
            RUSLE dan GIS. Sains Malaysiana 47(10): 2241- 2249.
  
           Marina, Z.A., Ahmad
            Abas, K., Tukimat, L. & Nurul Akhma, Z. 2018. Hydrological change effects
            on Sungai Langat water quality. Sains Malaysiana 47(7): 1401-1411.
  
           Mokhtar, J. &
            Hafizi, M.S. 2016. Soil erosion and sediment problems in the Alur Ilmu, UKM. Malaysian
              Journal of Society and Space 12(13): 145-156.
  
           Mondal, A., Khare, D.,
            Kundu, S., Mondal, S., Mukherjee, S. & Mukhopadhyay, A. 2017. Spatial soil
            organic carbon (SOC) prediction by regression kriging using remote sensing
            data. The Egyptian Journal of Remote Sensing and Space Science 20(1):
            61-70.
  
           Morgan, R.P.C. 2005. Soil
            Erosion and Conservation. New York: Wiley.
  
           Obaid, H.A. &
            Shahid, S. 2017. Soil erosion susceptibility of Johor River basin. Water and
              Environment Journal 31(3): 367-374.
  
           Phinzi, K. & Ngetar,
            N.S. 2018. The assessment of water-borne erosion at catchment level using
            GIS-based RUSLE and remote sensing: A review. International Soil and Water
              Conservation Research 7(1): 27-46.
  
           Renard, K.G., Foster, G.R., 
              Weesies, G.A., McCool, D.K. & Yoder, D.C. 1997. Predicting 
              Soil Erosion by Water: A Guide to Conservation Planning with the 
              Revised Universal Soil Loss Equation (RUSLE). US Department 
              of Agriculture, Agriculture Handbook Number 703. Washington, DC: 
              Government Printing Office. pp. 47-51.   Rizeei, H.M., Saharkhiz,
            M.A., Biswajeet, P. & Noordin, A. 2016. Soil erosion prediction based on
            land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE
            models. Geocarto International 31(10): 1158-1177.
  
           Roose, E.J. 1977. Application
            of the Universal Soil Loss Equation of Wischmeier and Smith in the West Africa. London: Wiley.
  
           Roslan, Z.A., Mohd
            Sofiyan, S. & Yusoff, N. 2017. Erosion risk assessment: A case study of the
            Langat river bank in Malaysia. International Soil and Water Conservation
              Research 5(1): 26-35.
  
           Sujaul, I.M., Gasim,
            M.B., Ismail, S., Sahibin, A.R. & Mohd Ekhwan, T. 2012. Estimation of the
            rate of soil erosion in the Tasik Chini catchment, Malaysia using the RUSLE
            model integrated with the GIS. Australian Journal of Basic and Applied
              Sciences 6(12): 286-296.
  
           Sujaul, I.M., Ismail,
            S., Gasim, M.B., Sahibin, A.R. & Mohd Ekhwan, T. 2010. Assessment of land
            use and land cover changes in the Tasik Chini catchment area, Pahang, Malaysia
            using the GIS. Advances in Environmental Biology 4(3): 404-413.
  
           Wischmeier, W.H. &
            Smith, D.D. 1958. Rainfall energy and its relationship to soil loss. Eos,
              Transactions American Geophysical Union 39(2): 285-291.
  
           Wischmeier, W.H. &
            Smith, D.D. 1978. Predicting Rainfall Erosion Losses: Guide to Conservation
              Planning. Vol. 537.
  
           Woldemariam, G., Iguala,
            A., Tekalign, S. & Reddy, R. 2018. Spatial modeling of soil erosion risk
            and its implication for conservation planning: The case of the Gobele
            watershed, East Hararghe zone, Ethiopia. Land 7(1): 25.
  
           Zaini, H., Tengku
            Nurliana, T.M.R., Ahmad, S. & Ab. Khalik, W. 2014. An assessment of natural
            radionuclides in water of Langat River estuary, Selangor. AIP Conference
              Proceedings 1584(1): 228-234.
  
           Zare, M., Panagopoulos,
            T. & Loures, L. 2017. Simulating the impacts of future land use change on
            soil erosion in the Kasilian watershed, Iran. Land Use Policy 67:
            558-572.
  
           
             
           *Pengarang untuk
            surat-menyurat; email: matt@ukm.edu.my
            
           
             
            
            
             |