Sains Malaysiana 48(12)(2019): 2605–2612

http://dx.doi.org/10.17576/jsm-2019-4812-01

 

The Effect of Glufosinate Ammonium in Three Different Textured Soil Types under Malaysian Tropical Environment

(Kesan Glufosinat Ammonium pada Tiga Jenis Tanah Berbeza Tekstur dalam PersekitaranTropika Malaysia)

 

TAYEB M.A., ISMAIL B.S. & MARDIANA-JANSAR K.*

 

Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 4 September 2019/Diterima: 3 Oktober 2019

 

ABSTRACT

Glufosinate ammonium is a broad spectrum, non-selective, contact and organophosphate herbicide which is commonly used in Malaysian oil palm plantations. Research area was one of the oil palm growing areas of Malaysia is located adjacent to the Tasik Chini, Pahang. Farmers use this herbicide to control several types of unwanted plants which could compete with the oil palm for nutrients. Rain water and the sprayed solution are easily adsorbed by soil particles. The glufosinate ammonium sorption was determined by the batch equilibrium technique. The collected soil samples (0-50 cm depth) divided into five groups at 10 cm depth intervals. Glufosinate ammonium adsorption coefficients were correlated with the soil pH, organic matter (OM), clay content, and cation exchange capacity (CEC). Series of glufosinate ammonium standard were as 0.01, 0.1, 0.25, 0.5, 1, 3, 5, and 10 μm/mL. The Linear and Freundlich equations were fitted for obtaining the adsorption and desorption isotherms. The result of the analyses showed that adsorption of glufosinate ammonium was correlated to the clay content. The clay fraction of the soil is the main absorbent of the glufosinate ammonium. Desorption from the soil was indicated by the high binding strength of the adsorbed glufosinate ammonium.

Keywords: Adsorption; desorption; glufosinate ammonium; linear equation; sorption isotherm

 

ABSTRAK

Glufosinat ammonium adalah herbisid yang berspektrum luas, tidak memilih, jenis sentuhan dan di dalam kumpulan organofosfat yang sering digunakan dalam ladang kelapa sawit di Malaysia. Tapak kajian adalah di kawasan penanaman kelapa sawit yang terletak bersebelahan dengan Tasik Chini, Pahang. Petani menggunakan herbisid ini untuk mengawal beberapa jenis rumpai yang mengganggu tanaman dan boleh bersaing dengan pokok kelapa sawit untuk mendapatkan nutrien. Air hujan dan larutan herbisid mudah terserap oleh zarah tanah. Penjerapan glufosinat ammonium ditentukan oleh teknik keseimbangan berkelompok. Sampel tanah yang dikumpulkan (kedalaman 0-50 cm) dibahagikan kepada lima kumpulan pada jarak 10 cm kedalaman. Koefisien penjerapan ammonium glufosinat dikaitkan dengan pH tanah, bahan organik (OM), kandungan tanah liat, dan kapasiti pertukaran kation (CEC). Siri piawai amonium glufosinat ialah 0.01, 0.1, 0.25, 0.5, 1, 3, 5 dan 10 μm/mL. Persamaan Linear dan Freundlich dipasang untuk mendapatkan isoterma penjerapan dan penyahjerapan. Hasil analisis menunjukkan bahawa penjerapan amonium glufosinat dikaitkan dengan peratusan kandungan tanah liat. Sebahagian tanah liat tanah adalah penjerap utama glufosinat ammonium. Penyahjerapan daripada tanah ditunjukkan oleh kekuatan ikatan penjerapan glufosinat ammonium yang tinggi.

Kata kunci: Glufosinat ammonium; isoterma penjerapan; penjerapan; persamaan linear; penyahjerapan

RUJUKAN

Accinelli, C., Crepanti, C., Vicari, A. & Catizone, P. 2004. Influence of insecticidal toxins from Bacillus thuringiensis subsp. kurstaki on the degradation of glyphosate and glufosinate-ammonium in soil samples. Agric. Ecosyst. Environ. 103(3): 497-507.

Allen-King, R.M., Butler, B.J. & Reichert, B. 1995. Fate of the herbicide glufosinate-ammonium in the sandy, low-organic-carbon aquifer at CFB Borden, Ontario, Canada. J. Contam. Hydrol. 18(2): 161-179.

Allison, L.E. 1965. Organic carbon. In Methods of Soil Analysis Part 2, edited by Black, C.A. Wisconsin: American Society of Agronomy. p. 1367.

Behrendt, H., Matthies, M., Gildemeister, H. & Görlitz, G. 1990. Leaching and trans-formation of glufosinate-ammonium and its main metabolite in a layered soil column. Environ. Toxicol. Chem. 9(5): 541-549.

Chang, S.Y. & Liao, C.H. 2002. Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect florescence detection. J. Chromatogr. A 959(1-2): 309-315.

Chuah Tse Seng, Lim Win Kent & Ismail B.S. 2018. Potential of oil palm frond residues in combination with s-metolachlor for the inhibition of selected herbicide-resistant biotypes of goosegrass emergence and seedling growth. Sains Malaysiana 47(4): 671-682.

Corbett, J.L., Askew, D., Thomas, W.E. & Wilcut, J.W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18(2): 443-453.

Dinehart, S.K., Smith, L.M., McMurry, S.T., Anderson, T.A., Smith, P.N. & Haukos, D.A. 2009. Toxicity of a glufosinate-and several glyphosate-based herbicides to juvenile amphibians from the southern High Plains, USA. Sci. Total Environ. 407(3): 1065-1071.

Druart, C., Delhomme, O., Vaufleury, A., Ntcho, E. & Millet, M. 2011. Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. Anal. Bioanal. Chem. 39(4): 1725-1732.

EPA. 1986. Method 9080, Cation-exchange capacity of soils (ammonium acetate). www3.epa.gov/epawaste/hazard/ testmethods/sw846/pdfs/9080.pdf.

Gallina, M.A. & Stephenson, G.R. 1992. Dissipation of [14C] glufosinate-ammonium in two Ontario soils. J. Agric. Food Chem. 40(1): 165-168.

Gerhartz, M. & Markus, K. 2010. Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after clean up by cation exchange resin. J. Sep. Sci. 33(8): 1139-1146.

Goodwin, L., Startin, J.R., Goodall, D.M. & Keely, B.J. 2003. Tandem mass spectrometric analysis of glyphosate, glufosinate, aminomethylphosphonic acid and methylphosphinicopropionic acid. Rapid Commun. Mass Spectrom. 17(9): 963-969.

Halimah, M., Tan, Y.A., Ismail, B.S. & Tayeb, M.A. 2016. Dissipation of fluroxypyr in a Malaysian agricultural soil with simulation using the persist and Varleach Model. J. Oil Palm Res. 28(1): 26-33.

Ibanez, M., Pozo, O.J., Ancho, J.V., Lopez, F.J. & Hernandez, F. 2005. Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. J. Chromatogr. A 1081(2): 145-155.

Ismail, B.S., Choo, L.Y., Salmijah, S., Halimah, M. & Tayeb, M.A. 2015a. Adsorption, desorption and mobility of cyfluthrin in three Malaysian tropical soils of different textures. J. Environ. Biol. 36(5): 1105-1111.

Ismail, B.S., Mazlinda, M. & Tayeb, M.A. 2015b. The persistence of Deltamethrin Malaysian agricultural soils. Sains Malaysiana 44(1): 83-89.

Ismail, B.S., Ooi, E.K. & Tayeb, M.A. 2015c. Degradation of triazine-2-14C metsulfuron-methyl in soil from an oil palm plantation. PLoS ONE 10(10): e0138170.

Ismail, B.S., Prayithno & Tayeb, M.A. 2015d. Contamination of rice field water with sulfonylurea and phenoxy herbicides in the Muda Irrigation Scheme, Kedah, Malaysia. J. Environ. Monit. Assess. 187: 406.

Ismail, B.S., Eng, O.K. & Tayeb, M.A. 2015e. Laboratory assessment of 14c-PhenylMetsulfuron-Methyl degradation in an oil palm plantation soil. J. Oil Palm Res. 27(4): 403-416.

Ismail, B.S., Mazlinda, M. & Tayeb, M.A. 2013. Adsorption, desorption and mobility of Cypermethrin and Deltamethrin in Malaysian soils. Int. J. Plant Animal Environ. Sci. 3(4): 23-29.

Jariani, S.M.J., Rosenani, A.B., Samsuri, A.W., Shukor, A.J. & Ainie, H.K., 2010. Adsorption and desorption of glufosinate ammoniumin soils cultivated with oil palm in Malaysia. Malaysian J. Soil Sci. 14: 41-52.

Kah, M. & Brown, C.D. 2006. Adsorption of ionisable pesticides in soils. Reviews of Environmental Contamination and Toxicology 188: 149-217.

Laitinen, P., Siimes, K.S., Ramo, L., Jauhiainen, L., Eronen, L., Oinonen, S. & Hartikainen, H. 2008. Effect of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate ammonium. J. Environ. Qual. 37(3): 830-838.

Nagatomi, Y., Yoshioka, T., Yanagisawa, M., Uyama, A. & Mochizuki, N. 2013. Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Biosci. Biotechnol. Biochem. 77(11): 2218-2221.

Qian, K., He, S., Tang, T., Shi, T., Li, J. & Cao, Y. 2011. A rapid liquid chromatography method for determination of glufosinate residue in maize after derivatisation. Food Chem. 127(2): 722-726.

Sancho, J., Hernández, V.F., López, F.J., Hogendoorn, E.A., Dijkman, E. & Zoonen, P.V. 1996. Rapid determination of glufosinate, glyphosate and aminomethylphosphonic acid in environmental water samples using precolumn fluorogenic labeling and coupled-column liquid chromatography. J. Chromatogr. A 737(1): 75-83.

Screpanti, C., Accinelli, C., Vicari, A. & Catizone, P. 2005. Glyphosate and glufosinate-ammonium runoff from a corn-growing area in Italy. Agron. Sustain. Dev. 25: 407-412.

Shin, J.S., Kim, K.M., Lee, D.J., Lee, S.B., Burgos, N.R. & Kuk, Y.I. 2011. Resistance levels and fitness of glufosinate-resistant transgenic sweet potato in field experiments. Field Crops Research 121(3): 324-332.

Tayeb, M.A., Ismail, B.S., Jansar-Mardiana, K. & Goh Choo Ta. 2016. Troubleshooting and maintenance of high-performance liquid chromatography during herbicide analysis: An overview. Sains Malaysiana 45(2): 237-245.

Tayeb, M.A., Ismail, B.S. & Mardiana-Jansar, K. 2015. Comparison of four different solid phase extraction cartridges for sample clean-up in the analysis of glufosinate ammonium from aqueous samples. Int. J. ChemTech. Res. 7(6): 2612- 2619.

Tebbe, C.C. & Reber, H.H. 1991. Degradation of [14C] phosphinothricin (glufosinate) in soil under laboratory conditions: Effects of concentration and soil amendments on 14CO2 production. Biol. Fertil. Soils 11(1): 62-67.

Tseng, S.H., Lo, Y.W., Chang, P.C., Chou, S.S. & Chang, H.M. 2004. Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector. J. Agric. Food Chem. 52(13): 4057-4063.

Tsuji, M., Akiyama, Y. & Yano, M. 1997. Simultaneous determination of glufosinate and glyphosate in crops. Analytical Sciences 13(2): 283-285.

Weber, J., Wilkerson, G. & Reinhardt, C. 2004. Calculating pesticide sorption coefficients (Kd) using selected soil properties. Chemosphere 55: 157-166.

You, W. & Barker, A.V. 2007. Effects of soil-applied glufosinate-ammonium on tomato plant growth and ammonium accumulation. Commun. Soil Sci. Plant Anal. 35(13-14): 1945-1955.

You, W. & Barker, A.V. 2002. Herbicidal actions of root-applied glufosinate ammonium on tomato plants. J. Am. Soc. Hortic. Sci. 127(2): 200-204.

Yun, Z., Kai, W., Wu, J. & Zhang, H. 2014. Field dissipation and storage stability of glufosinate ammonium and its metabolites in soil. Int. J. Environ. Anal. Chem. 2014: 256091.

Zablotowicz, R., Krutz, L., Weaver, M.A., Accinelli, C. & Reddy, K.N. 2008. Glufosinate and ammonium sulfate inhibit atrazine degradation in adapted soils. Biol. Fert. Soils 45(1): 19-26.

 

*Pengarang untuk surat-menyurat; email: mardiana@ukm.edu.my