Sains Malaysiana 48(12)(2019): 2649–2661
http://dx.doi.org/10.17576/jsm-2019-4812-06
Kajian Pengkompleksan
Sebatian Bis-Tiourea dengan Ion Aluminium sebagai Ionofor dalam Pembangunan
Sensor Ion Potensiometri
(Complexation Study of
Bis-Thiourea Compound with Aluminium Ion as Ionophore for Development of
Potentiometric Ion Sensor)
KOOK SHIH YING, FATIMATUL AKMA AWANG NGAH, SUHAILA SAPARI, LEE YOOK HENG
& SITI AISHAH HASBULLAH*
Centre for
Advanced Materials & Renewable Resources, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Diserahkan: 15
Julai 2019/Diterima: 25 September 2019
ABSTRAK
Sebatian terbitan tiourea telah banyak digunakan sebagai ionofor
untuk merkuri, kadmium, kuprum, plumbum dan ferum (III) dalam bidang sensor
kimia. Namun, penggunaan sebatian tiourea sebagai ionofor aluminium masih tidak
banyak dilaporkan. Dalam kajian ini, satu sebatian bis-tiourea baharu
1,1’-[(metilazandiyil)bis(etana-2,1-diyil)]bis[3-(naftalen-1-yil)tiourea] ACH telah
disintesis dan dicirikan dengan menggunakan spektroskopi 1H, 13C-resonans
magnetik nukleus, spektroskopi inframerah dan spektrometri jisim. Untuk menilai
dan menentusah kesesuaian sebatian ACH sebagai ionofor aluminium,
kajian pengkompleksan antara ligan ACH dengan ion aluminium dalam
komposisi pelarut H2O-EtOH yang berbeza melalui kaedah
spektrofluorimetri telah dijalankan. Antara lima jenis komposisi pelarut, hanya
pelarut 25%H2O-75%EtOH menunjukkan pembentukan kompleks. Nisbah
stoikiometri bagi ion kompleks yang terbentuk antara ligan ACH dengan
ion Al3+ ialah 3:1 dengan formula [Al(ACH)3]3+ dan
nilai pKa yang diperoleh ialah 5.10±0.01. Struktur ion kompleks
[ACH-Al]3+ dengan stokoimetri 1:1 juga telah dioptimumkan melalui
pengiraan teori fungsi ketumpatan. Kedua-dua atom sulfur daripada kumpulan
berfungsi bis-tiourea didapati merupakan tapak aktif yang terlibat dalam proses
pengkompleksan dan geometri separa rongga ditunjukkan pada ligan ACH untuk
berkoordinat dengan ion Al3+. Nilai negatif yang rendah pada
tenaga pengikatan [ACH-Al]3+, iaitu -5.560 × 106 kJ/mol
juga memaparkan kestabilan ion kompleks yang kuat. Sebagai kesimpulan, sebatian ACH adalah sesuai digunakan sebagai ionofor aluminium yang baharu
dalam sensor ion potensiometri.
Kata kunci:
1,1’-[(metilazandiyil)-bis(etana-2,1-diyil)]bis[3-(naftalen-1-yil)tiourea];
kajian pengkompleksan; pencirian sebatian bis-tiourea; pengiraan teori fungsi
ketumpatan
ABSTRACT
Thiourea compounds have been applied as ionophores for mercury,
cadmium, copper, lead, and iron(III) in the field of chemical sensor. However,
thiourea compound as aluminium ionophore has not yet been sufficiently
explored. In this work, a new thiourea compound,
1,1’-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea]
had been synthesized and characterized by using 1H, 13C-nuclear magnetic
resonance spectroscopy, Fourier-transform infrared spectroscopy and mass
spectrometry. To assess and confirm the suitability of ACH compound
as aluminum ionophore, complexation study of ACH ligand
with aluminum ion in different solvent compositions of H2O-EtOH
via spectrofluorimetic method had been carried out. Among the five types of
solvent mixtures, the study indicated that only the solvent mixture of 25%H2O-75%EtOH
showed the formation of complex. The stoichiometric ratio formed between ACH ligand
and Al3+ ions was 3:1 with the formula of [Al(ACH)3]3+ and
the pKa value was 5.10±0.01. The structure optimization of the
complex ion [ACH-Al]3+ in the ratio of 1:1 was also
conducted by using the density functional theory calculation. Both of the
sulfur atoms in the functional group of bis-thiourea were found to be the main
active sites for the complexation process and the ACH ligand
showed a partial cavity geometry to coordinate with Al3+ ion.
The low negative value of the binding energy [ACH-Al]3+,
-5.560 × 106 kJ/mol also showed that the complex ion formed was
strong and stable. In conclusion, ACH compound was suitable as a
new aluminum ionophore for potentiometric ion sensor.
Keywords:
1,1’-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea];
bis-thiourea compound characterization; complexation study; density functional
theory
RUJUKAN
Abdullahi, A.A., Choudhury, I.A., Azuddin, M. & Nahar, N.
2017. Effect of mixing process parameters and suitability of backbone polymer
for aluminum powder injection molding feedstock. Sains Malaysiana 46(3):
477-483.
Al-kindy, S.M.Z., Al-hinai, A., Al-rasbi, N.K., Suliman, F.E.O.
& Al-lawati, H.J. 2015. Spectrofluorimetric determination of aluminium in
water samples using N-((2-hydroxy-naphthalen-1-yl)methylene) acetylhydrazide. Journal
of Taibah University for Science 9(4): 601-609.
Bakó, I. & Mayer, I. 2016. On dipole moments and hydrogen bond
identification in water clusters. Journal of Physical Chemistry A 120(25):
4408-4417.
Carmalt, C.J., Mileham, J.D., White, A.J.P., Williams, D.J. &
Rushworth, S. 2003. Synthetic and structural studies on aluminium thiolate
complexes. Polyhedron 22(18): 2655- 2660.
Dennington, R., Keith, T. & Millam, J. 2016. Gauss View.
Version 5. Semichem Inc., Shawnee Mission.
Doroshenko, A.O. & Pivovarenko, V.G. 2003. Fluorescence
quenching of the ketocyanine dyes in polar solvents: Anti- TICT behavior. Journal
of Photochemistry and Photobiology A: Chemistry 156: 55-64.
Fakhar, I. & Hasbullah, S.A. 2018. Synthesis and binding
behaviour of new isomers of bis-thiourea. Sains Malaysiana 47(6):
1199-1208.
Fakhar, I., Yamin, B.M. & Hasbullah, S.A. 2017. A comparative
study of the metal binding behavior of alanine based bis-thiourea isomers. Chemistry
Central Journal 11(1): 1-16.
Faridbod, F., Ganjali, M.R., Dinarvand, R. & Norouzi, P. 2008.
Schiff’s bases and crown ethers as supramolecular sensing materials in the
construction of potentiometric membrane Sensors. Sensors 8: 1645-1703.
Ghanei-motlagh, M., Fayazi, M. & Taher, M.A. 2014. On the
potentiometric response of mercury (II) membrane sensors based on symmetrical
thiourea derivatives - Experimental and theoretical approaches. Sensors
& Actuators: B. Chemical 199: 133-141.
Granadero, D., Bordello, J., Perez-Alvite, M.J., Novo, M. &
Al-Soufi, W. 2010. Host-guest complexation studied by fluorescence correlation
spectroscopy: Adamantane-cyclodextrin inclusion. International Journal of
Molecular Sciences 11(1): 173-188.
Herbich, J., Waluk, J., Thummel, R.P. & Hung, C.Y. 1994.
Mechanisms of fluorescence quenching by hydrogen bonding in various aza
aromatics. Journal of Photochemistry and Photobiology A: Chemistry 80:
157-160.
Jumal, J., Yamin, B.M., Ahmad, M. & Lee, Y.H. 2012. Mercury
ion-selective electrode with self-plasticizing poly(n–buthylacrylate) membrane
based on 1,2-bis-(N’- benzoylthiourei-do)cyclohexane as ionophore. APCBEE
Procedia 3(May): 116-123.
Kaur, H., Chhibber, M. & Mittal, S. 2017. Acyclic
arylamine-based ionophores as potentiometric sensors for Zn2+ and
Ni2+ ions. Journal of Carbon Research 3(4): 1-13.
Khairi. 2016. New thiourea compounds as ionophores for
potentiometric sensors of H2PO4- and
Hg2+. Ph.D. Thesis. Faculty Sciences and Technology.
Universiti Kebangsaan Malaysia (Tidak diterbitkan).
Kolusheva, T., Hristova, M. & Costadinnova, L. 2012. Study of
the complex formation reaction between Al(III) and tannic acid. Journal of
University of Chemical Technology and Metallurgy 47(5): 570-573.
Kook, S.Y. 2019. Potentiometric ion sensor based on new bis-thiourea
compund in the determination of aluminium. Ph.D. Thesis. Faculty
Sciences and Technology. Universiti Kebangsaan Malaysia (Tidak diterbitkan).
Kook, S.Y., Lee, Y.H., Hassan, N.I. & Hasbullah, S.A. 2018. A
new copper ionophore N1, N3-bis[[3,5-bis(trifluoromethyl)
phenyl]carbamothioyl]isophtalamide for potentiometric sensor. Sains
Malaysiana 47(11): 2657-2666.
Lakowicz, J.R. 1983. Effects of solvents on fluorescence emission
spectra. In Principles of Fluorescence Spectroscopy. Boston: Springer.
pp. 187-215.
Lazo, A.R., Bustamante, M., Jimenez, J., Arada, M.A. &
Yazdani- Pedram, M. 2006. Preparation and study of a 1-furoyl-3,3-
diethylthiourea electrode. Journal of the Chilean Chemical Society 51:
975-978.
Li, Y., Chai, Y., Yuan, R., Liang, W., Zhang, L. & Ye, G.
2008. Aluminium(III)-selective electrode based on a newly synthesized
glyoxal-bis-thiosemicarbazone Schiff base. Journal of Analytical Chemistry 63(11):
1090-1093.
Misra, A., Shahid, M. & Dwivedi, P. 2009. An efficient
thiourea-based colorimetric chemosensor for naked-eye recognition of fluoride
and acetate anions: UV-vis and 1HNMR studies. Talanta 80(2): 532-538.
Motlagh, M.G., Taher, M.A. & Ali, A. 2010. PVC membrane and
coated graphite potentiometric sensors based on 1-phenyl-3-
pyridin-2-yl-thiourea for selective determination of iron (III). Electrochimica
Acta 55(22): 6724-6730.
Payehghadr, M. & Ebrahim, S. 2017. Solvent effect on
complexation reactions. Journal of Inclusion Phenomena and Macrocyclic
Chemistry 89(3): 253-271.
Pérez, M.D.L.A.A.,
Yanes, S.L. & Cardona, M. 2010. Copper(II) selective electrodes based on
1-furoyl-3,3’-diethylthiourea as a neutral carrier. Journal of the Chilean
Chemical Society 3: 371-373.
Person, A., Moncomble,
A. & Cornard, J.P. 2014. The complexation of AlIII, PbII, and CuII metal
ions by esculetin: A spectroscopic and theoretical approach. Journal of
Physical Chemistry A 118(14): 2646-2655.
Poléo, A.B.S. 1995.
Aluminum polymerization - A mechanism of acute toxicity of aqueous aluminum to
fish. Aquatic Toxicology 31(4): 347-356.
Rana, S., Mittal, S.,
Singh, N., Singh, J. & Banks, C. 2016. Schiff base modified screen printed
electrode for selective determination of aluminium (III) at trace level. Sensors
& Actuators: B. Chemical 239: 17-27.
Reichardt, C. 1994.
Solvatochromic dyes as solvent polarity indicators. Chemical Reviews 94(8):
2319-2358.
Reinhoudt, D.N. 1992. Molecular
Materials for the Transduction of Chemical Information into Electronic Signals
by Chemical Field-Effect Transistors. Netherland: American Chemical
Society.
Saeed, A., Flörke, U.
& Erben, M.F. 2014. A review on the chemistry, coordination, structure and
biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. Journal
of Sulfur Chemistry 35(3): 318-355.
Siswanta, D., Wulandari,
Y.D. & Jumina, J. 2016. Synthesis of poly(benzyleugenol) and its
application as an ionophore for a potassium ion-selective electrode. Eurasian
Journal of Analytical Chemistry 11(3): 115-125.
Starnes, W.H., Frantz,
S. & Chung, H.T. 1997. Aluminum chloride [alias its reaction product(s)
with ethanol] for the stabilization of poly(vinyl chloride)? Polymer
Degradation and Stability 56(1): 103-108.
Stewart, H.H. 2002.
Binding of proflavin to chymotrypsin: an experiment to determine protein-ligand
interactions by direct nonlinear regression analysis of spectroscopic titration
data. Biochemical Education 27(2): 118-121.
Suhud, K., Lee, Y.H.,
Rezayi, M., Al-Abbasi, A.A., Hasbullah, S.A., Ahmad, M. & Kassim, M.B.
2015. Conductometric studies of the thermodynamics for complexation of
1,1-diethyl-3-(4-methoxybenzoyl)thiourea and cobalt(II) cation in aqueous
binary mixtures of polar organic solvents. Journal of Solution Chemistry 44(2):
181-192.
Supian, S.M., Lee, Y.H.,
Tan, L.L. & Chong, K.F. 2013. Quantitative determination of Al (III) ion by
using Alizarin Red S including its microspheres optical sensing material
analytical methods. Analytical Methods 5: 2602-2609.
Tahir, S.M., Al-Abbasi,
A., Ghazali, Q., Arifin, K. & Kassim, M.B. 2018. Synthesis, structure and
spectroscopic properties of oxovanadium tris(3,5-dimethylpyrazolyl)borate
aroylthiourea complexes. Sains Malaysiana 47(8): 1775-1785.
Tajik, S., Taher, M.A.
& Sheikhshoaie, I. 2013. Potentiometric determination of trace amounts of
aluminium utilizing polyvinyl chloride membrane and coated platinum sensors
based on E-N’-(2-Hydroxy-3-methoxybenzylidene) benzohydrazide. Journal of
AOAC International 96(1): 204-211.
Ullah, H., Shah,
A.U.H.A., Bilal, S. & Ayub, K. 2013. DFT study of polyaniline NH3, CO2, and
CO gas sensors: Comparison with recent experimental data. Journal of
Physical Chemistry C 117(45): 23701-23711.
Vallejos, S., Muñoz, A.,
Ibeas, S., Serna, F., García, F.C. & García, J.M. 2014. Selective and
sensitive detection of aluminium ions in water via fluorescence “turn-on” with
both solid and water soluble sensory polymer substrates. Journal of
Hazardous Materials 276: 52-57.
Vandana, B. 2018.
Resonance. Supramolecular Chemistry 23: 277-290.
Wilson, D., Ángeles,
M.D.L. & Alegret, S. 2010. Lead (II) ion selective electrodes with PVC
membranes based on two bis-thioureas as ionophores: 1,3-bis(N-benzoylthioureido)-
benzene and 1,3-bis(N-furoylthioureido)benzene. Journal of Hazardous
Materials 181(1-3): 140-146.
Yan, Z., Wang, H., Xu,
C., Wen, X. & Gu, B. 2014. Preparation of a new aluminum (III) selective
electrode based on a hydrazone-containing benzimidazole derivative as a neutral
carrier. Journal of Molecular Liquids 190: 185-189.
Zhang, Z., Lu, S., Sha,
C. & Xu, D. 2015. A single thiourea-appended 1,8-naphthalimide chemosensor
for three heavy metal ions: Fe3+, Pb2+, and Hg2+. Sensors and Actuators, B:
Chemical 208: 258-266.
*Pengarang
untuk surat-menyurat; email: aishah80@ukm.edu.my
|