Sains Malaysiana 48(12)(2019): 2649–2661

http://dx.doi.org/10.17576/jsm-2019-4812-06

 

Kajian Pengkompleksan Sebatian Bis-Tiourea dengan Ion Aluminium sebagai Ionofor dalam Pembangunan Sensor Ion Potensiometri

(Complexation Study of Bis-Thiourea Compound with Aluminium Ion as Ionophore for Development of Potentiometric Ion Sensor)

 

KOOK SHIH YING, FATIMATUL AKMA AWANG NGAH, SUHAILA SAPARI, LEE YOOK HENG & SITI AISHAH HASBULLAH*

 

Centre for Advanced Materials & Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 15 Julai 2019/Diterima: 25 September 2019

 

ABSTRAK

Sebatian terbitan tiourea telah banyak digunakan sebagai ionofor untuk merkuri, kadmium, kuprum, plumbum dan ferum (III) dalam bidang sensor kimia. Namun, penggunaan sebatian tiourea sebagai ionofor aluminium masih tidak banyak dilaporkan. Dalam kajian ini, satu sebatian bis-tiourea baharu 1,1’-[(metilazandiyil)bis(etana-2,1-diyil)]bis[3-(naftalen-1-yil)tiourea] ACH telah disintesis dan dicirikan dengan menggunakan spektroskopi 1H, 13C-resonans magnetik nukleus, spektroskopi inframerah dan spektrometri jisim. Untuk menilai dan menentusah kesesuaian sebatian ACH sebagai ionofor aluminium, kajian pengkompleksan antara ligan ACH dengan ion aluminium dalam komposisi pelarut H2O-EtOH yang berbeza melalui kaedah spektrofluorimetri telah dijalankan. Antara lima jenis komposisi pelarut, hanya pelarut 25%H2O-75%EtOH menunjukkan pembentukan kompleks. Nisbah stoikiometri bagi ion kompleks yang terbentuk antara ligan ACH dengan ion Al3+ ialah 3:1 dengan formula [Al(ACH)3]3+ dan nilai pKa yang diperoleh ialah 5.10±0.01. Struktur ion kompleks [ACH-Al]3+ dengan stokoimetri 1:1 juga telah dioptimumkan melalui pengiraan teori fungsi ketumpatan. Kedua-dua atom sulfur daripada kumpulan berfungsi bis-tiourea didapati merupakan tapak aktif yang terlibat dalam proses pengkompleksan dan geometri separa rongga ditunjukkan pada ligan ACH untuk berkoordinat dengan ion Al3+. Nilai negatif yang rendah pada tenaga pengikatan [ACH-Al]3+, iaitu -5.560 × 106 kJ/mol juga memaparkan kestabilan ion kompleks yang kuat. Sebagai kesimpulan, sebatian ACH adalah sesuai digunakan sebagai ionofor aluminium yang baharu dalam sensor ion potensiometri.

Kata kunci: 1,1’-[(metilazandiyil)-bis(etana-2,1-diyil)]bis[3-(naftalen-1-yil)tiourea]; kajian pengkompleksan; pencirian sebatian bis-tiourea; pengiraan teori fungsi ketumpatan

 

ABSTRACT

Thiourea compounds have been applied as ionophores for mercury, cadmium, copper, lead, and iron(III) in the field of chemical sensor. However, thiourea compound as aluminium ionophore has not yet been sufficiently explored. In this work, a new thiourea compound, 1,1’-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea] had been synthesized and characterized by using 1H, 13C-nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy and mass spectrometry. To assess and confirm the suitability of ACH compound as aluminum ionophore, complexation study of ACH ligand with aluminum ion in different solvent compositions of H2O-EtOH via spectrofluorimetic method had been carried out. Among the five types of solvent mixtures, the study indicated that only the solvent mixture of 25%H2O-75%EtOH showed the formation of complex. The stoichiometric ratio formed between ACH ligand and Al3+ ions was 3:1 with the formula of [Al(ACH)3]3+ and the pKa value was 5.10±0.01. The structure optimization of the complex ion [ACH-Al]3+ in the ratio of 1:1 was also conducted by using the density functional theory calculation. Both of the sulfur atoms in the functional group of bis-thiourea were found to be the main active sites for the complexation process and the ACH ligand showed a partial cavity geometry to coordinate with Al3+ ion. The low negative value of the binding energy [ACH-Al]3+, -5.560 × 106 kJ/mol also showed that the complex ion formed was strong and stable. In conclusion, ACH compound was suitable as a new aluminum ionophore for potentiometric ion sensor.

Keywords: 1,1’-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea]; bis-thiourea compound characterization; complexation study; density functional theory

RUJUKAN

Abdullahi, A.A., Choudhury, I.A., Azuddin, M. & Nahar, N. 2017. Effect of mixing process parameters and suitability of backbone polymer for aluminum powder injection molding feedstock. Sains Malaysiana 46(3): 477-483.

Al-kindy, S.M.Z., Al-hinai, A., Al-rasbi, N.K., Suliman, F.E.O. & Al-lawati, H.J. 2015. Spectrofluorimetric determination of aluminium in water samples using N-((2-hydroxy-naphthalen-1-yl)methylene) acetylhydrazide. Journal of Taibah University for Science 9(4): 601-609.

Bakó, I. & Mayer, I. 2016. On dipole moments and hydrogen bond identification in water clusters. Journal of Physical Chemistry A 120(25): 4408-4417.

Carmalt, C.J., Mileham, J.D., White, A.J.P., Williams, D.J. & Rushworth, S. 2003. Synthetic and structural studies on aluminium thiolate complexes. Polyhedron 22(18): 2655- 2660.

Dennington, R., Keith, T. & Millam, J. 2016. Gauss View. Version 5. Semichem Inc., Shawnee Mission.

Doroshenko, A.O. & Pivovarenko, V.G. 2003. Fluorescence quenching of the ketocyanine dyes in polar solvents: Anti- TICT behavior. Journal of Photochemistry and Photobiology A: Chemistry 156: 55-64.

Fakhar, I. & Hasbullah, S.A. 2018. Synthesis and binding behaviour of new isomers of bis-thiourea. Sains Malaysiana 47(6): 1199-1208.

Fakhar, I., Yamin, B.M. & Hasbullah, S.A. 2017. A comparative study of the metal binding behavior of alanine based bis-thiourea isomers. Chemistry Central Journal 11(1): 1-16.

Faridbod, F., Ganjali, M.R., Dinarvand, R. & Norouzi, P. 2008. Schiff’s bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane Sensors. Sensors 8: 1645-1703.

Ghanei-motlagh, M., Fayazi, M. & Taher, M.A. 2014. On the potentiometric response of mercury (II) membrane sensors based on symmetrical thiourea derivatives - Experimental and theoretical approaches. Sensors & Actuators: B. Chemical 199: 133-141.

Granadero, D., Bordello, J., Perez-Alvite, M.J., Novo, M. & Al-Soufi, W. 2010. Host-guest complexation studied by fluorescence correlation spectroscopy: Adamantane-cyclodextrin inclusion. International Journal of Molecular Sciences 11(1): 173-188.

Herbich, J., Waluk, J., Thummel, R.P. & Hung, C.Y. 1994. Mechanisms of fluorescence quenching by hydrogen bonding in various aza aromatics. Journal of Photochemistry and Photobiology A: Chemistry 80: 157-160.

Jumal, J., Yamin, B.M., Ahmad, M. & Lee, Y.H. 2012. Mercury ion-selective electrode with self-plasticizing poly(n–buthylacrylate) membrane based on 1,2-bis-(N’- benzoylthiourei-do)cyclohexane as ionophore. APCBEE Procedia 3(May): 116-123.

Kaur, H., Chhibber, M. & Mittal, S. 2017. Acyclic arylamine-based ionophores as potentiometric sensors for Zn2+ and Ni2+ ions. Journal of Carbon Research 3(4): 1-13.

Khairi. 2016. New thiourea compounds as ionophores for potentiometric sensors of H2PO4- and Hg2+. Ph.D. Thesis. Faculty Sciences and Technology. Universiti Kebangsaan Malaysia (Tidak diterbitkan).

Kolusheva, T., Hristova, M. & Costadinnova, L. 2012. Study of the complex formation reaction between Al(III) and tannic acid. Journal of University of Chemical Technology and Metallurgy 47(5): 570-573.

Kook, S.Y. 2019. Potentiometric ion sensor based on new bis-thiourea compund in the determination of aluminium. Ph.D. Thesis. Faculty Sciences and Technology. Universiti Kebangsaan Malaysia (Tidak diterbitkan).

Kook, S.Y., Lee, Y.H., Hassan, N.I. & Hasbullah, S.A. 2018. A new copper ionophore N1, N3-bis[[3,5-bis(trifluoromethyl) phenyl]carbamothioyl]isophtalamide for potentiometric sensor. Sains Malaysiana 47(11): 2657-2666.

Lakowicz, J.R. 1983. Effects of solvents on fluorescence emission spectra. In Principles of Fluorescence Spectroscopy. Boston: Springer. pp. 187-215.

Lazo, A.R., Bustamante, M., Jimenez, J., Arada, M.A. & Yazdani- Pedram, M. 2006. Preparation and study of a 1-furoyl-3,3- diethylthiourea electrode. Journal of the Chilean Chemical Society 51: 975-978.

Li, Y., Chai, Y., Yuan, R., Liang, W., Zhang, L. & Ye, G. 2008. Aluminium(III)-selective electrode based on a newly synthesized glyoxal-bis-thiosemicarbazone Schiff base. Journal of Analytical Chemistry 63(11): 1090-1093.

Misra, A., Shahid, M. & Dwivedi, P. 2009. An efficient thiourea-based colorimetric chemosensor for naked-eye recognition of fluoride and acetate anions: UV-vis and 1HNMR studies. Talanta 80(2): 532-538.

Motlagh, M.G., Taher, M.A. & Ali, A. 2010. PVC membrane and coated graphite potentiometric sensors based on 1-phenyl-3- pyridin-2-yl-thiourea for selective determination of iron (III). Electrochimica Acta 55(22): 6724-6730.

Payehghadr, M. & Ebrahim, S. 2017. Solvent effect on complexation reactions. Journal of Inclusion Phenomena and Macrocyclic Chemistry 89(3): 253-271.

Pérez, M.D.L.A.A., Yanes, S.L. & Cardona, M. 2010. Copper(II) selective electrodes based on 1-furoyl-3,3’-diethylthiourea as a neutral carrier. Journal of the Chilean Chemical Society 3: 371-373.

Person, A., Moncomble, A. & Cornard, J.P. 2014. The complexation of AlIII, PbII, and CuII metal ions by esculetin: A spectroscopic and theoretical approach. Journal of Physical Chemistry A 118(14): 2646-2655.

Poléo, A.B.S. 1995. Aluminum polymerization - A mechanism of acute toxicity of aqueous aluminum to fish. Aquatic Toxicology 31(4): 347-356.

Rana, S., Mittal, S., Singh, N., Singh, J. & Banks, C. 2016. Schiff base modified screen printed electrode for selective determination of aluminium (III) at trace level. Sensors & Actuators: B. Chemical 239: 17-27.

Reichardt, C. 1994. Solvatochromic dyes as solvent polarity indicators. Chemical Reviews 94(8): 2319-2358.

Reinhoudt, D.N. 1992. Molecular Materials for the Transduction of Chemical Information into Electronic Signals by Chemical Field-Effect Transistors. Netherland: American Chemical Society.

Saeed, A., Flörke, U. & Erben, M.F. 2014. A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. Journal of Sulfur Chemistry 35(3): 318-355.

Siswanta, D., Wulandari, Y.D. & Jumina, J. 2016. Synthesis of poly(benzyleugenol) and its application as an ionophore for a potassium ion-selective electrode. Eurasian Journal of Analytical Chemistry 11(3): 115-125.

Starnes, W.H., Frantz, S. & Chung, H.T. 1997. Aluminum chloride [alias its reaction product(s) with ethanol] for the stabilization of poly(vinyl chloride)? Polymer Degradation and Stability 56(1): 103-108.

Stewart, H.H. 2002. Binding of proflavin to chymotrypsin: an experiment to determine protein-ligand interactions by direct nonlinear regression analysis of spectroscopic titration data. Biochemical Education 27(2): 118-121.

Suhud, K., Lee, Y.H., Rezayi, M., Al-Abbasi, A.A., Hasbullah, S.A., Ahmad, M. & Kassim, M.B. 2015. Conductometric studies of the thermodynamics for complexation of 1,1-diethyl-3-(4-methoxybenzoyl)thiourea and cobalt(II) cation in aqueous binary mixtures of polar organic solvents. Journal of Solution Chemistry 44(2): 181-192.

Supian, S.M., Lee, Y.H., Tan, L.L. & Chong, K.F. 2013. Quantitative determination of Al (III) ion by using Alizarin Red S including its microspheres optical sensing material analytical methods. Analytical Methods 5: 2602-2609.

Tahir, S.M., Al-Abbasi, A., Ghazali, Q., Arifin, K. & Kassim, M.B. 2018. Synthesis, structure and spectroscopic properties of oxovanadium tris(3,5-dimethylpyrazolyl)borate aroylthiourea complexes. Sains Malaysiana 47(8): 1775-1785.

Tajik, S., Taher, M.A. & Sheikhshoaie, I. 2013. Potentiometric determination of trace amounts of aluminium utilizing polyvinyl chloride membrane and coated platinum sensors based on E-N’-(2-Hydroxy-3-methoxybenzylidene) benzohydrazide. Journal of AOAC International 96(1): 204-211.

Ullah, H., Shah, A.U.H.A., Bilal, S. & Ayub, K. 2013. DFT study of polyaniline NH3, CO2, and CO gas sensors: Comparison with recent experimental data. Journal of Physical Chemistry C 117(45): 23701-23711.

Vallejos, S., Muñoz, A., Ibeas, S., Serna, F., García, F.C. & García, J.M. 2014. Selective and sensitive detection of aluminium ions in water via fluorescence “turn-on” with both solid and water soluble sensory polymer substrates. Journal of Hazardous Materials 276: 52-57.

Vandana, B. 2018. Resonance. Supramolecular Chemistry 23: 277-290.

Wilson, D., Ángeles, M.D.L. & Alegret, S. 2010. Lead (II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1,3-bis(N-benzoylthioureido)- benzene and 1,3-bis(N-furoylthioureido)benzene. Journal of Hazardous Materials 181(1-3): 140-146.

Yan, Z., Wang, H., Xu, C., Wen, X. & Gu, B. 2014. Preparation of a new aluminum (III) selective electrode based on a hydrazone-containing benzimidazole derivative as a neutral carrier. Journal of Molecular Liquids 190: 185-189.

Zhang, Z., Lu, S., Sha, C. & Xu, D. 2015. A single thiourea-appended 1,8-naphthalimide chemosensor for three heavy metal ions: Fe3+, Pb2+, and Hg2+. Sensors and Actuators, B: Chemical 208: 258-266.

 

*Pengarang untuk surat-menyurat; email: aishah80@ukm.edu.my

 

 

 

 

 

sebelumnya