Sains Malaysiana 48(12)(2019): 2759–2766
http://dx.doi.org/10.17576/jsm-2019-4812-17
Application of Variable
Zero-Moment Point in Walking Control of the Biped Robot
(Penggunaan
Pemboleh Ubah
Titik Momen Sifar
pada Kawalan
Berjalan Robot Dua Kaki)
CHENGLIN JING*
School
of Mathematics and Statistics, Guizhou University of
Finance and Economics, Guiyang, 550025
China
Diserahkan: 21 Februari 2019/Diterima: 23 Disember 2019
ABSTRACT
Using the predictive control based on zero-moment point (ZMP),
the biped robot can walk comparatively stably. However, the problems such as
lack of self-adaptivity are also highlighted mainly
on account of modeling errors and environmental perturbations; specifically,
the tracking errors of ZMP are generated, leading to a
reduced walking stability. To address this problem, in the present work, the
expected ZMP was decomposed into the reference ZMP which
is pre-planned offline, and the variable ZMP which can be varied in real
time. With the addition of the variable ZMP, the outside interferences
can be eliminated. By combining the predictive control system and the inverse
system of variable ZMP, the walking pattern of the robot
with favorable self-adaptivity can be achieved.
Finally, the simulation results indicate that the self-adaptivity of the robot can be effectively improved using the proposed control system.
Keywords: Biped robot; inverse system; predictive control; self-adaptivity; variable zero-moment point (ZMP)
ABSTRAK
Penggunaan kawalan
ramalan berdasarkan
titik momen sifar
(ZMP),
robot dua kaki boleh berjalan
dengan agak stabil.
Walau bagaimanapun,
masalah seperti kekurangan penyesuaian diri juga diketengahkan
terutamanya pada
kesilapan pemodelan dan alam sekitar;
secara khusus,
kesilapan pengesanan ZMP
dijana, membawa kepada pengurangan kestabilan berjalan. Untuk menangani masalah ini dalam
kajian semasa,
ZMP
yang dijangka telah
reput ke dalam
rujukan ZMP yang dipra-rancang
secara luar
talian, dan pemboleh
ubah ZMP yang boleh
diubah dalam
masa nyata. Dengan penambahan
pemboleh ubah
ZMP,
gangguan luar
boleh dihapuskan. Dengan menggabungkan sistem kawalan ramalan dan sistem
songsang pemboleh
ubah ZMP, pola
berjalan robot dengan penyesuaian diri yang menggalakkan boleh dicapai. Kesimpulannya, keputusan simulasi menunjukkan bahawa penyesuaian diri robot boleh diperbaiki dengan berkesan menggunakan sistem kawalan cadangan.
Kata kunci: Kawalan
ramalan; pemboleh
ubah titik momen
sifar (ZMP); penyesuaian
diri; robot dua kaki; sistem
songsang
RUJUKAN
Chang,
J. & Liu, G. 2012. Designing a control system for humanoid soccer robots. Computer
Applications and Software 29(11): 302-304, 333.
Czarnetzki, S., Kerner, S. & Urbann, O. 2009.
Observer-based dynamic walking control for biped robots. Robotics and Autonomous
Systems 57(2009): 839-845.
Fu,
G., Yang, Y., Chen, J. & Li, J. 2013. Walking control for humanoid robot
based on ZMP error correction. Robot 35(1): 39-44.
Gao,
W. & Wang, W.F. 2017. The fifth geometric-arithmetic index of bridge graph
and carbon nanocones. Journal of Difference
Equations and Applications 23(1-2SI): 100-109.
Hans,
S., Tripathi, D., Mogbademu,
A.A. & Tyagi, B. 2018. Inequalities for rational
functions with prescribed poles. Journal of Interdisciplinary Mathematics 21(1):
157-169.
Huy, T.D., Phuong,
N.T., Loc, H.D. & Cuong,
N.C. 2013. A simple walking control method for biped robot with stable gait. Journal
of Computer Science and Cybernetics 29(2): 105-118.
Jimmy,
O.R. 2010. A hybrid CPG-ZMP control system for stable walking of a simulated
flexible spine humanoid robot. Neural Networks 23(1): 452-460.
Jing,
C., Xue, F., Zhang, H. & Li, Z. 2010.
Implementation method of predictive control for biped robot stabilization
walking pattern. Chinese Journal of Scientific Instrument 31(12):
2700-2705.
Kajita, S. & Guan,
Y. 2007. Humanoid Robots. Beijing: Tsinghua University Press.
Kajita, S., Morisawa, M., Harada, K., Kaneko, K., Kanehiro,
F. & Fujiwara, K. 2006. Biped walking pattern generator allowing auxiliary
ZMP Control. Internationonal Conference on
Intelligent Robots and Systems. Beijing, China. pp. 2993- 2999.
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi,
K. & Hirukawa, H. 2003. Biped walking pattern
generation by using preview control of zero-moment point. Conference on
Robotics & Automation. Taiwan, China. pp. 1620-1626.
Katayama,
T., Ohki, T. & Inoue, T. 1985. Design of an optimal controller for a
discrete time system subject to previewable demand. International
Journal of Control 41(3): 677-699.
Khusainov, R., Afanasyev, I., Sabirova, L. & Magid, E. 2016. Bipedal robot locomotion modelling
with virtual height inverted pendulum and preview control approaches in
Simulink environment. Journal of Robotics, Networking and Artificial Life 3(3):
182-187.
Kljuno, E. &
Williams, R.L. 2010. Humanoid walking robot: Modeling, inverse dynamics, and
gain scheduling control. Journal of Robotics 2010: Article ID: 278597.
Kunimatsu, S., Fukuda, T., Nakasaki, K. & Ishitobi, M.
2008. l͚ Preview
control for biped walking pattern generation. SICE Annual Conference. Japan:
The University Electro- Communications. pp. 1916-1919.
Liu, Z., Peng, W., Zare, Y., Hui, D. & Rhee, K.Y. 2018. Predicting the
electrical conductivity in polymer carbon nanotube nanocomposites based on the
volume fractions and resistances of the nanoparticle, interphase, and tunneling
regions in conductive networks. RSC
Advances 8(34): 19001-19010.
Mansour, T. & Shattuck, M. 2017. Set partitions and
parity successions. Journal of Discrete Mathematical Sciences and
Cryptography 20(8): 1651-1674.
New
ASIMO. 2011. Honda Motor Co. Ltd., New ASIMO [EB/ OL].
http://world.honda.com/HDTV/ASIM-O/New-ASIMO-run- 6kmh-slomo/index.htm.
Park,
J. & Youm, Y. 2007. General ZMP preview control
for bipedal walking. IEEE International Conference on Robotics and
Automation. Roma, Italy. pp. 2682-2687.
Peng,
W.X., Wang, L.S., Mirzaee, M., Ahmadi, H., Esfahani, M. & JFremaux, S.
2017. Hydrogen and syngas production by catalytic biomass gasification. Energy
Conversion and Management 135: 270-273.
Promsakon, C. 2018. Edge colorability of unitary endo-cayley graphs of cyclic groups. Journal of Discrete Mathematical Sciences and
Cryptography 2(1): 191-198.
Shimmyo, S., Sato, T.
& Ohnishi, K. 2013. Biped walking pattern generation by using preview
control based on three-mass model. IEEE Transactions on Industrial
Electronics 60(11): 5137-5147.
Sugihara,
T. & Yamamoto, T. 2017. Foot-guided agile control of a biped robot through
ZMP manipulation. IEEE International Conference on Intelligent Robots and
Systems. Vancouver, Canada. pp. 4546-4551.
Xue, F. & Chen,
X. 2012. Novel gait pattern planning method for increasing flexibility of biped
robot. Journal of Chinese Computer Systems 33(9): 1928-1933.
Yu,
X., Wei, S. & Liao, Q. 2009. Development and technology research of
humanoid robot. Journal of Mechanical Engineering 45(3): 71-75.
Zeng,
H. & Yang, Y. 2014. On-line gait planning by using preview control of zero
moment point. Journal of Computer Applications 34(2): 514-518.
*Pengarang untuk surat-menyurat; email: 1265805946@qq.com