| Sains Malaysiana 48(12)(2019): 2817–2830 http://dx.doi.org/10.17576/jsm-2019-4812-23 
   A 
              New Classification of Hemirings through Double-Framed Soft 
              h-Ideals  (Pengelasan Baru Hemirings melalui h-Ideals 
              Lembut-Dua Kerangka)   FAIZ 
              MUHAMMAD KHAN1,4*,NIEYUFENGU1, HIDAYAT ULLAH KHAN2 & ASGHAR KHAN3    1Department 
              of Applied Mathematics, School of Natural and Applied Sciences, 
              Northwestern Polytechnical University Xi'an, Shaanxi, PR China   2Department 
              of Mathematics, University of Malakand, Lower Dir Chakddara, KP, 
              Pakistan   3Department 
              of Mathematics, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan   4Department 
              of Mathematics and Statistics, University of Swat, KP, Pakistan
   Diserahkan: 21 Februari 2019/Diterima: 23 Disember 
              2019   ABSTRACT   Due 
              to lack of parameterization, various ordinary uncertainty theories 
              like theory of fuzzy sets, and theory of probability cannot solve 
              complicated problems of economics and engineering involving uncertainties. 
              The aim of the present paper was to provide an 
              appropriate mathematical tool for solving such type of complicated 
              problems. For the said purpose, the notion of double-framed soft 
              sets in hemirings is introduced. As h-ideals of hemirings 
              play a central role in the structural theory, therefore, we developed a new type of subsystem of 
              hemirings. Double-framed soft left (right) 
              h-ideals, double-framed soft h-bi-ideals and double-framed 
              soft h-quasi-ideals 
              of hemiring R are determined. 
              These concepts are elaborated through suitable examples. Furthermore, 
              we are bridging ordinary h-ideals and 
              double-framed soft h-ideals of hemirings through double-framed soft including sets and characteristic 
              double-framed soft functions. It is also shown that every double-framed 
              soft h-quasi-ideal is 
              double-framed soft h-bi-ideal but the 
              converse inclusion does not hold. A well-known class of hemrings 
              i.e. h-hemiregular 
              hemirings is characterized by the properties 
              of these newly developed double-framed soft h-ideals of R. Keywords: DFS h-bi-ideal; 
              DFS h-hemiregularhemirin; 
              DFS h-quasi-idealg; DFS sets; h-ideals ABSTRAK   Disebabkan oleh kekurangan 
              pemparameteran, pelbagai 
              teori ketidakpastian biasa seperti teori 
              set kabur dan 
              teori kebarangkalian tidak boleh menyelesaikan 
              masalah ekonomi 
              dan kejuruteraan yang rumit yang melibatkan ketidakpastian. Tujuan penulisan kertas 
              ini adalah untuk menyediakan satu alat matematik 
              yang sesuai untuk 
              menyelesaikan masalah rumit yang sedemikian. Untuk tujuan tersebut, 
              satu tanggapan 
              set lembut dual kerangka dalam hemirings diperkenalkan. Oleh kerana h-ideals hemiring memainkan 
              peranan utama 
              dalam teori struktur, 
              maka kami telah 
              membangunkan satu jenis subsistem hemiring baru. 
              h-ideals lembut kiri (kanan) dual kerangka, h-dwi-ideal lembut dual kerangka dan h-separa-ideal lembut dual kerangka hemirings ditentukan. 
              Konsep 
              ini dihuraikan melalui contoh yang sesuai. Selain itu, kami menghubungkan h-ideals biasa dan h-ideals 
              lembut dual kerangka 
              hemirings melalui set lembut dual kerangka dan pencirian fungsi 
              lembut dual kerangka. 
              Kajian ini juga menunjukkan bahawa setiap h-quasi-ideal 
              lembut dual bingkai 
              adalah h-dwi-ideal lembut dual kerangka tetapi rangkuman akas tidak dapat bertahan. 
              Satu 
              kelas hemirings terkenal iaitu h-hemisekata hemirings dicirikan oleh sifat h-ideals 
              dua bingkai 
              lembut daripada R yang baru dibangunkan ini. Kata kunci: Set DFS; DFS h-dwi-ideal; DFS h-hemisekata hemiring; h-ideal; DFS h-separa-ideal RUJUKAN   Acar, U., Koyuncu, F. & Tanay, B. 2010. 
              Soft sets and soft rings. Comput. 
              Math. Appl. 59: 3458-3463. Aho, A.W. & Ullman, J.D. 1976. 
              Introduction to Automata Theory. Languages and Computation. 
              Reading: Addison Wesley. Ali, 
              M.I., Shabir, M. & Naz, 
              M. 2011. Algebraic structure of soft sets associated with new operations. 
              Comput. Math. Appl. 61: 2647-2654. Ali, 
              M.I., Feng, F., Min, W.K. & Shabir, 
              M. 2009. On some new operations in soft set theory. Comput. 
              Math. Applic. 57: 1547-1553. Atagun, A.O. & Sezgin, A. 2011. Soft substructures of rings, fields and modules. 
              Comput. Math. Appl. 61: 
              592-601. Benson, 
              D.G. 1989. Bialgebra: Some foundations 
              for distributed and concurrent computation. Fundam. 
              Inf. 12: 427-486. Cagman, N. & Enginoglu, S. 2011. FP-soft set theory and its applications. 
              Ann. Fuzzy Math. Inform. 2: 219-226. Çagman, N. & Enginoglu, S. 2010a. Soft matrix theory and its decision making. 
              Comput. Math. Appl. 59: 
              3308-3314. Çagman, N. & Enginoglu, S. 2010b. Soft set theory and uni-int decision making. Eur. J. Oper. 
              Res. 207: 848-855. Conway, 
              J.H. 1971. Regular Algebra and Finite Machines. London: Chapman 
              and Hall. Droste, M. & Kuich, W. 2013. Weighted definite automata over hemirings. Theoretical Computer Science 485: 38-48. Feng, 
              F. 2011. Soft rough sets applied to multicriteria 
              group decision making. Ann. Fuzzy Math. Inform. 2: 69-80. Feng, 
              F., Liu, X.Y., Leoreanu-Fotea, V. & 
              Jun, Y.B. 2011. Soft sets and soft rough sets. Inform. Sci. 
              181: 1125-1137. Feng, 
              F., Jun, Y.B., Liu, X. & Li, L. 2010. An adjustable approach 
              to fuzzy soft set based decision making. J. Comput. 
              Appl. Math. 234: 10-20. Feng, 
              F., Jun, Y.B. & Zhao, X. 2008. Soft semirings. 
              Comput. Math. Appl. 56: 2621-2628. Golan, 
              J.S. 1999. Semirings and Their 
              Application. Dodrecht: Kluwer Academic 
              Publication. Hebisch, U. & Weinert, H.J. 1998. Semirings: 
              Algebraic Theory and Applications in the Computer Science. Singapore: 
              World Scientific.  Henriksen, M. 1958. Ideals 
              in semirings with commutative addition. 
              Am. Math. Soc. Not. 6: 321. Iizuka, K. 1959. On the 
              Jacobson radical of a semiring. Tohoku 
              Math. J. 11: 409-421. Jun, 
              Y.B. 2008. Soft BCK/BCI-algebras. Comput. 
              Math. Applic. 56: 1408-1413. Jun, 
              Y.B. & Ahn, S.S. 2012. Double-framed 
              soft sets with applications in BCK/BCI-algebras. J. Appl. Math. 
              p. 15. Jun, 
              Y.B. & Park, C.H. 2008. Applications of soft sets in ideal theory. 
              Inform. Sci. 178: 2466-2475. Jun, 
              Y.B., Muhiuddin, G. & Al-roqi, 
              A.M. 2013. Ideal theory of BCK/BCI-algebras based on double-framed 
              soft sets. Appl. Math. Inf. Sci. 7(5): 1879-1887. Jun, 
              Y.B., Lee, K.J. & Khan, A. 2010. Soft ordered semigroups. Math. 
              Logic Q. 56: 42-50. Jun, 
              Y.B., Lee, K.J. & Park, C.H. 2009. Soft set theory applied to 
              ideals in d-algebras. Comput. 
              Math. Applic. 57: 367-378. Jun, 
              Y.B., Lee, K.J. & Zhan, J. 2009. Soft p-ideals of soft BCI-algebras. 
              Comput. Math. Applic. 
              58: 2060-2068. Khan, 
              A., Izhar, M. & Sezgin, 
              A. 2017. Characterizations of Abel Grassmann's 
              groupoids by the properties of double-framed soft ideals. 
              International Journal of Analysis and Applications 15(1): 
              62-74. Khan, 
              A., Izhar, M. & Khalaf, 
              M.M. 2017. Double-framed soft LA-semigroups. Journal of Intelligent 
              & Fuzzy Systems 33(6): 3339-3353. Khan, 
              A., Jun, Y.B., Shah, S.I.A. & Ali, M. 2015. Characterizations 
              of hemirings in terms of cubic h-ideals. Soft Comput. 19: 
              2133-2147. Kuich, W. & Salomma, A. 1986. Semirings, 
              Automata, Languages. Berlin: Springer.  Ma, 
              X. & Zhan, J. 2014. Characterizations of hemiregular 
              hemirings via 
              a kind of new soft union sets. Journal of Intelligent & Fuzzy 
              Systems 27: 2883-2895. Ma, 
              X., Zhan, J. & Davvaz, B. 2016. Applications 
              of soft intersection sets to hemirings 
              via SI-h-bi-ideals and SI-h-quasi-ideals. 
              Filomat 30(8): 2295-2313. Maji, P.K., Roy, A.R. 
              & Biswas, R. 2002. An application of soft sets in a decision 
              making problem. Comput. Math. Applic. 44: 1077-1083. Maji, P.K., Biswas, 
              R. & Roy, A.R. 2003. Soft set theory. Comput. 
              Math. Applic. 45(4-5): 555-562. Majumdar, P. & Samanta, S.K. 2008. Similarity measure of soft sets. New 
              Mathematics and Natural Computation 4(1): 1-12. Molodtsov, D. 1999. Soft set theory-First results. Comput. 
              Math. Applic. 37(4-5): 19-31. Molodtsov, D., Leonov, V.Y. & Kovkov, D.V. 
              2006. Soft set technique and its applications. Nechetkie 
              Sistemy i Myagkie Vychisleniya 1(1): 8-39. Roy, 
              A.R. & Maji, P.K. 2007. A soft set 
              theoretic approach to decision making problems. Journal of Computational 
              and Applied Mathematics 203: 412-418. Sezer, A.S. 2014. A 
              new approach to LA-semigroup theory via 
              the soft sets. J. Intell. & 
              Fuzzy Syst. 
              26: 2483-2495. Sezgin, A. & Atagun, A.O. 2011. On operations of soft sets. Comput. Math. Appl. 61: 1457-1467. Torre, 
              D.R.L. 1965. On h-ideals and k-ideals in hemirings. 
              Publ. Math. Debrecen. 12: 219-226. Vandiver, H.S. 1934. Note 
              on a simple type of algebra in which cancellation law of addition 
              does not hold. Bull. Am. Math. Soc. 40: 914-920. Xiao, 
              Z., Gong, K., Xia, S. & Zou, Y. 2010. Exclusive disjunctive 
              soft sets. Comput. Math. Appl. 59: 2128-2137. Yin, 
              Y. & Li, H. 2008. The characterizations of 
              h-hemiregular 
              hemirings and h-intra 
              hemiregular hemirings. Information Sciences 178: 3451-3464. Zhan, 
              J. & Maji, P.K. 2014. Applications 
              of soft union sets to h-semisimple and h-quasi-hemiregular hemirings. Hacettepe Journal of Mathematics and Statistics 
              43(5): 815-825. Zhan, 
              J. & Jun, Y.B. 2010. Soft BL-algebras based on fuzzy sets. Comput. Math. Applic. 
              59: 2037-2046. Zhan, 
              J. & Dudek, W.A. 2007. Fuzzy h-ideals 
              of hemirings. Inf. Sci. 177: 878-886. Zou, 
              Y. & Xiao, Z. 2008. Data analysis approaches of soft sets under 
              incomplete information. Knowledge-Based Systems 21: 941-945. 
 
 *Pengarang 
              untuk surat-menyurat; email: 
              faiz_zady@yahoo.com   
             
              
                   
             
             |