Sains Malaysiana 48(1)(2019): 61–68
http://dx.doi.org/10.17576/jsm-2019-4801-07
Effects
of Organic Amendment on Soil Organic Carbon in Treated Soft Clay in Paddy
Cultivation Area
(Kesan
Bahan Pembaik Pulih Organik ke atas Karbon Organik Tanah dalam Tanah Jerlus
Terawat di Kawasan Penanaman)
MUHAMMAD RENDANA1, WAN MOHD RAZI IDRIS2*, SAHIBIN ABDUL RAHIM3, ZULFAHMI ALI RAHMAN2, TUKIMAT LIHAN2 & HABIBAH JAMIL4
1Postgraduate Programme, Universitas
Sriwijaya, 30139 Bukit Besar, Palembang, Indonesia
2School of
Environmental and Natural Resource Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Environmental Sciences
Programme, Faculty of Science and Natural Resources Universiti Malaysia Sabah, 88400
Kota Kinabalu, Sabah, Malaysia
4School
of Geology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
18 Februari 2018/Diterima: 10 Ogos 2018
ABSTRACT
Soft clay soil has become a major problem in paddy cultivation
area. Nearly half of the total paddy field in Kedah State, Malaysia cannot be
utilized for paddy cultivation because of soft clay soil. The problem is
related to the presence of weak hardpan structure that permits the soil to
experience continuous wet condition. The soil also causes in the alteration of
many processes soil organic carbon sequestration and turnover, but the main
effect on the land is decrease in soil fertility. To investigate the effects of
soft clay soil on soil organic carbon content, stock and change rate, the trial
has been conducted in Alor Senibong paddy field area in Kedah, Malaysia
examining the problematic paddy field that associated with soft clay soil
problem. Hasil Tani Organic Compound (HTOC) was an organic soil
amendment that used to enhance soil organic carbon in this study. Paddy field
with the presence of soft clay soil showed a low soil organic carbon content
and stock around 0.67% and 1.01 t·ha-1, respectively (depth 0-15
cm). The reduction of soil organic carbon content in soft clay soil was likely
because of the waterlogged soil environment, the stability of soil aggregates
and decline in humification process which then reduced soil organic carbon
input. After being treated with HTOC, soil organic carbon
content and carbon stock in soft clay soil have significantly increased by
0.67-3.14% and 1.01-4.76 t·ha-1 (depth 0-15 cm),
respectively, yielding a mean monthly carbon change rate of 4.36 g C kg−1·mth.−1 (depth 0-15 cm). As
whole, the succession of HTOC application to improve soil
organic carbon content in this study could be employed in other paddy field
areas that associated with soft clay soil problem.
Keywords: Organic amendment; soft clay soil; soil fertility; soil
organic carbon
ABSTRAK
Tanah jerlus telah menjadi masalah utama di kawasan penanaman padi.
Hampir separuh daripada jumlah sawah padi di Negeri Kedah, Malaysia
tidak boleh digunakan untuk penanaman padi kerana tanah jerlus.
Masalah ini adalah berkaitan dengan kewujudan struktur lapisan keras
tanah lemah yang membolehkan tanah mengalami keadaan basah secara
berterusan. Tanah jerlus juga menyebabkan perubahan banyak kepada
proses penyerapan atau kehilangan karbon organik tanah, tetapi kesan
utama pada tanah adalah penurunan kesuburan tanah. Untuk mengkaji
kesan tanah jerlus pada kandungan karbon organik tanah, stok karbon
tanah dan kadar perubahan kandungan karbon organik tanah, sebuah
kajian telah dilakukan di kawasan sawah Alor Senibong, Kedah, Malaysia
yang menghadapi masalah tanah jerlus. Sebatian Organik Hasil Tani
(HTOC) adalah bahan pembaik pulih
tanah yang digunakan dalam kajian ini untuk meningkatkan kandungan
karbon organik dalam tanah. Plot sawah yang bermasalah tanah jerlus
menunjukkan kandungan karbon organik tanah dan stok karbon yang
rendah sekitar 0.67% dan 1.01 t·ha-1
(kedalaman tanah 0-15 cm). Pengurangan kandungan karbon organik
tanah dalam tanah jerlus dijangkakan disebabkan oleh persekitaran
tanah yang berair, kestabilan agregat tanah dan penurunan proses
penghumusan yang kemudiannya mengurangkan input karbon organik tanah.
Selepas dirawat dengan HTOC,
kandungan karbon organik tanah dan stok karbon dalam tanah jerlus
meningkat dengan ketara sebanyak 0.67-3.14% dan 1.01-4.76 t·ha-1 (kedalaman
tanah 0-15 cm), dengan kadar perubahan purata bulanan karbon sekitar
4.36 g C kg-1·mth.-1 (kedalaman tanah 0-15 cm). Secara
keseluruhan, kejayaan aplikasi HTOC untuk meningkatkan kandungan
karbon organik tanah dalam kajian ini boleh digunakan di kawasan
sawah lain yang berkaitan dengan masalah jerlus.
Kata kunci: Bahan pembaik
pulih organik; karbon organik tanah; kesuburan tanah; tanah jerlus
RUJUKAN
Adnan, N.S., Mohsin, T., Shahzad, B., Guozheng, Y., Shah, F.,
Saif, A., Muhammad, A.B., Shahbaz, A.T., Abdul, H. & Biangkham, S. 2017.
Soil compaction effects on soil health and crop productivity: An overview. Environ.
Sci. Pollut. Res. 10: 1-13.
Aimrun, W., Amin,
M.S.M., Ezrin, M.H. & Mastura, M. 2011. Paddy soil properties and yield
characteristics based on apparent electrical conductivity zone delineation for
a humid tropical rice farm. African Journal of Agricultural Research 6:
5339-5350.
Anlei, C., Xiaoli, X., Tida, G., Haijun, H., Wei, W.,
Wenxue, W. & Yakov, K. 2017. Rapid decrease of soil carbon after
abandonment of subtropical paddy fields. Plant Soil 415: 203-214.
Avery, B.W. & Bascomb, C.L. 1982. Soil Survey
Laboratory Methods, Soil Survey Technical Monograph. United Kingdom: Soil
Survey of England and Wales.
Azizul, G. 2008. Soil hardpan improvement technique using
vibrator subsoiler for rice mechanization farm. Buletin Teknologi Tanaman 5:
1-4.
Chivenge,
P., Vanlauwe, B. & Six, S. 2011. Does the combined application of organic
and mineral nutrient sources influence maize productivity? A metaanalysis. Plant Soil 342: 1-30.
Claudia, M.B.F.M., Etelvino, N., Tatiana, F.R. &
Michael, H.B.H. 2013. Soil organic matter: Chemical and physical
characteristics and analytical methods. A Review. Current Organic Chemistry 17:
2985-2990.
Eduardo, C.S.N., Marcos, G.P., Júlio, C.F.F. & Thaís,
A.C.N. 2016. Aggregate formation and soil organic matter under different
vegetation types in Atlantic Forest from Southeastern Brazil. Semina:
Ciencias Agrarias 37: 3927-3940.
Fageria,
N.K., Moreira, A. & Coelho, A.M. 2011. Yield and yield components
of upland rice as influenced by nitrogen sources. Journal
of Plant Nutrition 34: 361-370.
FAO. 2016. Statistical Databases. Food and
Agriculture Organization of the United Nations. http://www.fao.org/
faostat/en/#data.
Ghimire, R., Norton, J.B. & Pendall, E. 2014.
Alfalfa-grass biomass, soil organic carbon, and total nitrogen under different
management approaches in an irrigated agroecosystem. Plant and Soil 374:
173-184.
Kirkby, M.J. 1980. Soil Erosion: Soil Loss Estimation.
New York: John Wiley & Sons.
Liu, C., Lu, M., Cui, J., Li, B. & Fang, C.M. 2014.
Effects of straw carbon input on carbon dynamics in agricultural soils: A
meta-analysis. Glob. Chang. Biol. 20: 1366-1138.
Liu, X.W., Wang, H.Y., Zhou, J.M., Hu, F.Q., Zhu, D.J.,
Chen, Z.M. & Liu, Y.Z. 2016. Effect of N fertilization pattern on rice
yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin,
China. PLoS One 11: 1-6.
MAFF. 1970 Modern Farming and the Soil. Report of the
Advisory Council on Soil Structure and Soil Fertility. HMSO, London.
Maggie, R.D., Bruno, J.R.A., Douglas, L.K., Keith, L.K.,
Marcelo, G. & Dana, A. 2018. Review of soil organic carbon measurement
protocols: A U.S. and Brazil comparison and recommendation. Sustainability 10:
1-20.
MARDI. 2002. Manual for Rice Cultivation. Serdang:
Malaysian Agricultural Research and Development Institute.
Marrenjo, G.J., Pádua, E.J.D., Silva, C.A., Soares, P.C.
& Zinn, Y.L. 2016. Impacts of long-term cultivation of fooded rice in gley
sols. Pesquisa Agropecuária Brasileira 51: 967-977.
Massey, D.M. & Windsor, G.W. 1967. Report.
Glasshouse Crops Res. Inst. p. 72.
Meng, Y.L., Qing, R.C., Yan, B.Q., Jing, L. & Tao, C.
2014. Aggregation and soil organic carbon fractions under different land uses
on the tableland of the Loess Plateau of China. Catena 115: 19-28.
Metson, A.J. 1956. Methods of Chemical Analysis for Soil
Survey Samples. New Zealand: New Zealand Department of Scientific and
Industrial Research.
Munawar, A. & Wanti, M. 2016. Effect of humic acid on
soil chemical and physical characteristics of embankment. MATEC Web of
Conferences 58: 1-6.
Murphy, B.W. 2015. Impact of soil organic matter on soil
properties-A review with emphasis on Australian soils. Soil Research 53:
605-635.
Nittaya, C. & Sirintornthep, T. 2011. Variation of soil
organic carbon stock in abandoned rice field managed by crop rotation. 3rd
iLEAPS Science Conference Garmisch- Partenkirchen, 18-23 September,
Germany.
Paramananthan, S. 1987. Field Legend for Soil Surveys in
Malaysia. Serdang: UPM Press.
Peng, W., Zeng, Y., Qinghua, S. & Shan, H. 2017.
Responses of rice yield and the fate of fertilizer nitrogen to soil organic
carbon. Plant Soil Environ. 63: 416-421.
Persson, J.A. 2008. Handbook for Kjeldahl Digestion.
4th ed. Denmark: FOSS, DK-3400 Hilleroed.
Ping, Y. & Wei, Z. 2013. The exploitation of rice paddy
field and its ecological protection. Intelligent System Design and
Engineering Applications (ISDEA), Third International Conference, 16-18
January, Hong Kong, China.
Prabhat, P. & Pil, J.K. 2014. Fractionation and
characterization of humic acids fromorganic amended rice paddy soils. Science
of the Total Environment 466: 952-956.
Razi, W.M.I., Sahibin, A.R., Zulfahmi, A.R., Tukimat, L.,
Habibah, J., Rendana, M. & Fazahar, M.N. 2017. Total organic carbon and
stock carbon in the soil at paddy field area Alor Senibong, Langgar, Kedah,
Malaysia. Proceedings of Geography and Environment. September 26-27. pp.
274-280.
Rodriguez, O.D., Guevara, H.J.P., Ruíz, C.R.G., Barrientos,
J.H. & Shevnin, V. 2011. Determination of hydraulic conductivity and fines
content in soils near an unlined irrigation canal in Guasave, Sinaloa, Mexico. Journal
of Soil Science and Plant Nutrition 11: 13-31.
Russell, E.W. & Balcerek, W. 1944. The determination of
the volume and airspace of soil clods. J. Agric. Sci. 34: 123-132.
Sahibin, A.R., Mohd Razi, W.I., Tukimat, L., Jamil, H.,
Rendana, M., Asmadi, I. & Zulfahmi, A.R. 2016. Effects of Hasil Tani
Organic Compound Product (HTOC) on the physico-chemical properties of paddy
soils in MADA. Proceeding of the Soil Science Conference of Malaysia.
April 5-7. Terengganu. pp. 339-344.
USDA. 1971. Guide for Interpreting Engineering uses of
Soils. Washington, D.C: U.S. Government Printing Office.
Wang, W., Xie, X., Chen, A., Yin, C. & Chen, W. 2013.
Effects of long-term fertilization on soil carbon, nitrogen, phosphorus and rice
yield. J. Plant Nutr. 36: 551-561.
Watanabe, K., Hong, M.L. & Kazuyuki, N. 2017. Effects of
the continuous application of rice straw compost and chemical fertilizer on
soil carbon and available silicon under a double rice cropping system in the
Mekong Delta, Vietnam. JARQ. 51: 233-239.
Watanabe, T., Kimura, M. & Asakawa, S. 2007. Dynamics of
methanogenic archaeal communities based on rRNA analysis and their relation to
methanogenic activity in Japanese paddy field soils. Soil Biol. Biochem. 39:
77-87.
Wissing, L., Kolbl, A., Hausler, W., Schad, P., Cao, Z.H.
& Kogel- Knabner, I. 2013. Management-induced organic carbon accumulation
in paddy soils: The role of organo-mineral associations. Soil Tillage Res.
126: 60-71.
Xiao,
L.X., Wei, W., Wen, W.T. & Ke, J.X. 2017. Waterlogging accelerates the loss
of soil organic carbon from abandoned paddy felds in the hilly terrain in
subtropical China. Scientific Reports 7: 1-6.
Zhao,
Y.N., He, X.H., Huang, X.C., Zhang, Y.Q. & Shi, X.J. 2016. Increasing soil
organic matter enhances inherent soil productivity while offsetting
fertilization effect under a rice cropping system. Sustainability 8:
879.
Zhang,
X.B., Sun, N., Wu, L.H., Xu, M.G., Bingham, I.J. & Li, Z.F. 2016. Effects
of enhancing soil organic carbon sequestration in the topsoil by fertilization
on crop productivity and stability: Evidence from long-term experiments with
wheat-maize cropping systems in China. Science of the Total Environment 562:
247-259.
Zulfahmi,
A.R., Sabturo, M.S.A., Idris, W.M.R., Lihan, T. & Rendana, M. 2017. Effect
of organic fertilizer on atterberg limit and strength of problematic clay soil. Proceedings of Geography and Environment. September 26-27. Perak. pp.
338-344.
*Pengarang
untuk surat-menyurat; email: razi@ukm.edu.my
|