Sains Malaysiana 48(2)(2019): 259–269
http://dx.doi.org/10.17576/jsm-2019-4802-01
Influence
of Oceanographic Parameters on the Seasonal Potential Fishing Grounds of Rastrelliger
kanagurta using Maximum Entropy Models and Remotely Sensed Data
(Pengaruh
Parameter Oseanografi terhadap Kawasan Potensi Musiman Penangkapan
Ikan Rastrelliger kanagurta menggunakan Model Entropi Maksimum
dan Data Satelit)
S.M. YUSOP
& M.A. MUSTAPHA*
School
of Environmental and Natural Resources Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Institute of Climate Change, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
9 Mac 2018/Diterima: 14 September 2018
ABSTRACT
Understanding of the spatial distribution of fish habitats is
crucial in order to achieve optimum fishing and to increase efficiency of
marine resource management. In this study, seasonal potential suitability
habitat model for Rastrelliger kanagurta off
the east coast of Peninsular Malaysia was derived using maximum entropy
(MaxEnt) by utilizing fishing locations and environmental parameters from
remotely sensed sea surface temperature (SST) and chl-a concentration
(chl-a) data. The influence of environmental parameters on the formation
of the potential fishing zones was also determined. The results showed that all
the seasonal models performed significantly better than random with AUC >
0.80, which indicated that the constructed models were applicable with ‘good’
to ‘excellent’ predictive accuracy. The model also showed that chl-a influenced R. kanagurta’s potential fishing ground during northeast and
intermediate monsoon of October. Meanwhile, SST contributed
more in defining the potential fishing grounds during southwest and
intermediate monsoon period of April. The seasonal and spatial extents of
potential fishing grounds were largely explained by chl-a (0.32-0.42
mg/m3 during northeast, 0.27-0.66 mg/m3 in
April, 0.21-0.30 mg/m3 during southwest monsoon and
0.22-0.39 mg/m3 in October) and SST (29.05-29.94oC
during northeast monsoon, 31.18-31.47oC in April, 31.17-31.48oC
during southwest monsoon and 30.34-31.11oC in October). This indicated
that seasonal changes in oceanographic parameters influenced spatial
distribution of fish. The results also demonstrated the applicability and
potential of MaxEnt in determination of potential fishing grounds and
describing the influence of oceanographic factors on the formation of the area.
Keywords: chl-a;
habitat suitability map (HSM); MaxEnt; seasonal distribution; SST
ABSTRAK
Memahami taburan reruang habitat ikan adalah penting untuk
mencapai penangkapan optimum dan meningkatkan kecekapan pengurusan sumber laut.
Dalam kajian ini, model potensi kesesuaian habitat musiman bagi Rastrelliger kanagurta di pantai timur
Semenanjung Malaysia diperoleh melalui model entropi maksimum (MaxEnt) dengan
menggunakan lokasi penangkapan dan parameter persekitaran suhu permukaan laut (SPL)
dan kepekatan klorofil-a (chl-a) daripada data penderiaan jauh.
Pengaruh parameter persekitaran terhadap pembentukan zon potensi perikanan juga
ditentukan. Hasil model MaxEnt menunjukkan bahawa semua model musiman adalah
jauh lebih baik daripada rawak pada AUC> 0.80 yang menunjukkan
bahawa model yang dibina sesuai dengan ketepatan ramalan ‘baik’ ke ‘cemerlang’.
Keputusan daripada model ini juga menunjukkan bahawa kepekatan chl-a lebih
mempengaruhi kawasan potensi perikanan R. kanagurta semasa monsun timur
laut dan monsun peralihan pada bulan Oktober. Sementara itu, SPL mempengaruhi
penentuan kawasan potensi perikanan semasa musim monsun barat daya dan monsun
peralihan pada bulan April. Sebahagian besar kawasan potensi perikanan
diasosiasikan dengan chl-a (0.32-0.42 mg/m3 semasa
monsun timur laut, 0.27-0.66 mg/m3 pada bulan April, 0.21-0.30
mg/m3 semasa monsun barat daya dan 0.22-0.39 mg/m3 pada
bulan Oktober) dan SPL (29.05-29.94oC
semasa monsun timur laut, 31.18-31.47oC pada bulan April,
31.17-31.48oC semasa monsun barat daya dan 30.34-31.11oC
pada bulan Oktober). Hal ini menunjukkan bahawa perubahan musiman bagi
parameter oseanografi mempengaruhi taburan reruang ikan. Keputusan kajian juga
menunjukkan kebolehan dan potensi MaxEnt dalam penentuan kawasan potensi
perikanan dan menjelaskan pengaruh faktor oseanografi terhadap pembentukan
kawasan tersebut.
Kata kunci: Klorofil-a; MaxEnt; peta kesesuaian
habitat; SPL; taburan bermusim
RUJUKAN
Akhir, M.F. & Chuen, Y.J. 2011. Seasonal variation of
water characteristics during inter-monsoon along the East Coast of Johor. Journal
of Sustainability Science and Management 6: 206-214.
Alabia, I.D., Saitoh, S-I., Mugo, R., Igarashi, H.,
Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T. & Seito, M. 2015. Seasonal
potential fishing ground prediction of neon flying squid (Ommastrephes
bartramii) in the western and central North Pacific. Fisheries
Oceanography 24: 190-203.
Amin, M.A.R., Ahmad, M.F., Hussim, M.H., Embong, M.F. &
Draman, R. 2014. Chlorophyll-a concentration variation over Terengganu
maritime. International Journal of Innovative, Science, Engineering &
Technology 1: 406-410.
Bardiyanto. & Kasa, W. 2012. Studi penangkapan ikan
kembung (Rastrelliger kanagurta) dengan menggunakan data satelit di Laut
Jawa pada musim tenggara dan barat laut. Ecotrophic 5: 21-26.
Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K.,
Polovina, J.J., Huret, M., Dulvy, N.K. & Demarcq, H. 2011. Satellite remote
sensing for an ecosystem approach to fisheries management. ICES Journal of
Marine Science 68: 651-666.
Chaturvedi, N. & Narain, A. 2003. Chlorophyll
distribution pattern in the Arabian Sea: Seasonal and regional variability, as
observed from SeaWiFS data. International Journal of Remote Sensing 24:
511-518.
Duan, R.Y., Kong, X.Q., Huang, M.Y., Fan, W.Y. & Wang,
Z.G. 2014. The predictive performance and stability of six species distribution
models. PLoS ONE 9: e112764.
Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier,
S. & Guisan, A. 2006. Novel methods improve prediction of species’
distributions from occurrence data. Ecography 29: 129-151.
Gu, W. & Swihart, R.K. 2004. Absent or undetected?
Effects of non-detection of species occurrence on wildlife-habitat models. Biology
of Conservation 116: 195-203.
Guisan, A. & Zimmermann, N.E. 2000. Predictive habitat
distribution models in ecology. Ecological Modelling 135: 147-186.
Guisan, A. & Thuiller, W. 2005. Predicting species
distribution: Offering more than simple habitat models. Ecological Letter 8:
993-1009.
Hernandez, P.A., Graham, C.H., Master, L.L. & Albert,
D.L. 2006. The effects of sample size and species characteristics on
performance of different species distribution modeling methods. Ecography 29:
773-785.
Krishnakumar, P.K., Mohamed, K.S., Asokan, P.K.,
Sathianandan, T.V., Zacharia, P.U., Abdurahiman, K.P., Shettigar, V. &
Durgekar, R.N. 2008. How environmental parameters influenced fluctuations in
oil sardine and mackerel fishery during 1926-2005 along the South-West Coast of
India? Marine Fisheries Information Service Technical and Extension Series 198:
1-5.
Krishnamurthy, V. & Kinter, J.L.III. 2002. The Indian
monsoon and its relation to global climate variability. In Global Climate, edited
by Rodo, X. New York: Springer-Verlag.
Lanz, E., Nevarez-Martinez, M., Lόpez-Martinez, J.
& Dworak, J.A. 2009. Small pelagic fish catches in the Gulf of California
associated with sea surface temperature and clorophyll. CalCOFI Report 50:
134-146.
Mackenzie, D.K., Nichols, J.D., Lachman, G.B., Droege, S.,
Royle, J.A. & Langtimm, C.A. 2002. Estimating site occupancy rates when
detection probabilities are less than one. Ecology 83: 2248-2255.
Manderson, J., Palamara, L., Kohut, J. & Oliver, M.
2011. Ocean observatory data are useful for regional habitat modelling of
species with different vertical habitat preferences. Marine Ecology Progress
Series 438: 1-7.
McKinney, M.A., McMeans, B.C., Tomy, G.T., Rosenberg, B.
& Ferguson, S.H. 2012. Trophic transfer of contaminants in a changing
arctic marine food web: Cumberland Sound, Nunavut, Canada. Environmental
Science and Technology 46: 9914-9922.
Malaysian Meteorological Department (MMD). 2017. Malaysia’s
climate. http://www.met.gov.my/web/metmalaysia/climate/
generalinformation/malaysia. Accessed on 19 September 2017.
Morris, L. & Ball, D. 2006. Habitat suitability
modelling of economically important fish species with commercial fisheries
data. ICES Journal of Marine Science 63: 1590- 1603.
Mustapha, M.A., Shaari, N., Lihan, T., Razib, N.A., Raja
Bidin Raja Hassan, Y.M. & Yaacob, K.K.K. 2014. Characterizing potential
fishing area of Rastrelliger kanagurta in the exclusive economic zone
(EEZ) of Malaysia using remotely sensed oceanographic data. Ecology,
Environment and Conservation 20: 15-20.
Muthoni, F.K. 2010. Modelling the spatial distribution of
snake species under changing climate scenario in Spain. Tesis S. Sn. Faculty of
Geo-information Science and Earth Observation, University of Twente
(Unpublished).
Nammalwar, P., Satheesh, S. & Ramesh, R. 2013.
Applications of remote sensing in the validations of potential fishing zones
(PFZ) along the Coast of North Tamil Nadu, India. Indian Journal of
Geo-Marine Sciences 42: 283-292.
Nurdin, S., Mustapha, M.A., Lihan, T. & Abd Ghaffar, M.
2015. Determination of potential fishing grounds of Rastrelliger kanagurta using
satellite remote sensing and GIS technique. Sains Malaysiana 44(2):
225-232.
O’Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel,
D.A., Carder, K.L., Garver, S.A., Kahru, M. & McClain, C. 1998. Ocean color
clorophyll algorithm for SEaWiFS. Journal of Geophysical Research 103:
24937-24954.
Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006.
Maximum entropy modeling of species geographic distributions. Ecological
Modelling 190: 231-259.
Phillips, S.J. & Dudik, M. 2008. Modeling of species
distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 31: 161-175.
Reddy, M.T., Begum, H., Sunil, N., Pandravada, S.R.,
Sivaraj, N. & Kumar, S. 2015. Mapping the climate suitability using MaxEnt
modeling approach for Ceylon Spinach (Basella alba L.) cultivation in
India. The Journal of Agricultural Sciences 10: 87-97.
Rijnsdorp,
A.D., Peck, M.A., Engelhard, G.H., Möllmann, C. & Pinnegar, J.K. 2009.
Resolving the effect of climate change on fish populations. ICES Journal of
Marine Science 66:1570-1583.
Shaari,
F. & Mustapha, M.A. 2017. Factors influencing the
distribution of chl-a along coastal waters of east Peninsular Malaysia. Sains Malaysiana 46(8): 1191-1200.
Solanki,
H.U., Dwivedi, R.M., Nayak, S.R., Jadeja, J.V., Thakar, D.B., Dave, H.B. &
Patel, M.I. 2001. Application of ocean color monitor chlorophyll and AVHRR SST
for fishery forecast: Preliminary validation results off Gujarat Coast,
Northwest Coast of India. Indian Journal of Marine Science 30: 132-138.
Syah,
A.F., Saitoh, S-I., Alabia, I.D. & Hirawake, T. 2016. Predicting potential
fishing zones for Pacific saury (Cololabis saira) with maximum entropy
models and remotely sensed data. Fishery Bulletin 114(3): 330-342.
Tobeῆa,
M., Prieto, R., Machete, M. & Silva, M.A. 2016. Modeling the potential
distribution and richness of Cetaceans in the Azores from Fisheries Observer
Program Data. Frontiers in Marine Science 3: 202.
Vivekanandan,
E., Gomathy, S., Thirumilu, P., Meiyappan, M.M. & Balakumar, S.K. 2009.
Trophic level of fishes occurring along the Indian Coast. Journal of Marine
Biological Association of India 51(1): 44-51.
Yanagi,
T., Sachoemar, S., Takao, T. & Fujiwara, S. 2001. Seasonal variation of
stratification in the Gulf of Thailand. Journal of Oceanography 57(4):
461-470.
Zainuddin,
M. & Saitoh, S. 2004. Detection of potential fishing ground for albacore
tuna using synoptic measurements of ocean color and thermal remote sensing in
the northwestern North Pacific. Geophysical Research Letters 31: L20311.
Zwolinski,
J.P., Emmet, R.L. & Demer, D.A. 2011. Predicting habitat to optimize
sampling of Pacific sardine (Sardinops sagax). ICES Journal of Marine
Science 68: 867-879.
*Pengarang
untuk surat-menyurat; email: muzz@ukm.edu.my