Sains Malaysiana 48(2)(2019): 329–335
http://dx.doi.org/10.17576/jsm-2019-4802-09
Oxidative
Stability of Crude and Refined Kenaf (Hibiscus cannabinus L.) Seed Oil
during Accelerated Storage
(Kestabilan
Oksidatif bagi Minyak Biji Kenaf (Hibiscus cannabinus L.) Mentah dan
Bertapis semasa Storan Pecut)
SOOK CHIN CHEW1, CHIN PING TAN2 & KAR LIN NYAM1*
1Department of Food
Science and Nutrition, Faculty of Applied Sciences, UCSI University,
56000 Kuala Lumpur, Federal Territory, Malaysia
2Department of Food
Technology, Faculty of Food Science and Technology, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
Diserahkan: 21 September 2017/Diterima: 31 Oktober 2018
ABSTRACT
Kenaf seed oil has been suggested to be used as edible oil but
there is limited information available about the oxidative stability of refined
kenaf seed oil. An oxidative stability test was performed on crude and refined
kenaf seed oil under accelerated storage at 65ºC for 24 days. The results
showed that refined oil underwent higher oxidation than the crude oil, as
indicated by the peroxide value (40.55 meq/kg), p-Anisidine value (18.78) and
total oxidation value (99.87) in refined oil at day 24. There was no significant
difference in the free fatty acid value in refined oil during the accelerated
storage. Oleic acid remained the most abundant in the fatty acid composition of
kenaf seed oil, followed by linoleic acid and palmitic acid during storage. The
unsaturated fatty acids decreased slightly coupled with a slight increase in
the saturated fatty acids in kenaf seed oil during storage. Refining process
decreased the oxidative stability of kenaf seed oil, but the refined kenaf seed
oil was able to maintain good quality in free fatty acid value and fatty acid
composition.
Keywords: Linoleic acid; oleic acid; refining process; total
oxidation value
ABSTRAK
Minyak biji kenaf telah dicadangkan untuk digunakan sebagai minyak
makan tetapi terdapat maklumat yang terhad tentang kestabilan oksidatif bagi
minyak biji kenaf bertapis. Ujian kestabilan oksidatif telah dilakukan ke atas
minyak biji kenaf mentah dan bertapis bawah dipercepatkan penyimpanan pada 65°C
selama 24 hari. Hasil kajian menunjukkan minyak bertapis menjalani pengoksidaan
lebih tinggi daripada minyak mentah seperti yang ditunjukkan oleh nilai
peroksida (40.55 meq/kg), p-Anisidine nilai (18.78) dan jumlah nilai
pengoksidaan (99.87) dalam minyak disempurnakan pada hari ke-24. Tiada
perbezaan yang signifikan dalam lemak nilai asid dalam minyak yang ditapis
semasa penyimpanan dipercepatkan. Asid oleik kekal yang paling banyak, diikuti
oleh asid linoleik dan asid palmitik semasa penyimpanan. Asid lemak tak tepu
menurun sedikit ditambah pula dengan sedikit peningkatan dalam asid lemak tepu
dalam minyak biji kenaf semasa penyimpanan. Proses penapisan menurun kestabilan
oksidatif bagi minyak biji kenaf, tetapi minyak benih kenaf yang disucikan
dapat mengekalkan kualiti yang baik di bebas nilai asid lemak dan lemak
komposisi asid.
Kata kunci: Asid linoleik; asid oleik; penapisan
proses; pengoksidaan jumlah nilai
RUJUKAN
AOCS. 2000. Peroxide value acetic
acid-chloroform Method Cd 8-53. In Official Methods and Recommended
Practices of the American Oil Chemists’ Society, edited by Firestone, D.
Champaign: AOCS Press.
AOCS. 1998a. Free fatty acids in crude and
refined oils method 26.042. In Official Methods and Recommended Practices of
the American Oil Chemists’ Society, edited by Firestone, D. Champaign: AOCS
Press.
AOCS. 1998b. p-Anisidine value method Cd
18-90. In Official Methods and Recommended Practices of the American Oil
Chemists’ Society, edited by Firestone, D. Champaign: AOCS Press.
Besbes, S., Blecker, C., Deroanne, C., Lognay,
G., Drira, N-E. & Attia, H. 2004. Quality changes and oxidative stability
of date seed oil during storage. Food Science and Technology International 10:
333-338.
Brinkmann, B. 2000. Quality criteria of
industrial frying oils and fats. European Journal of Lipid Science and Technology 102: 539-541.
Chew, S.C. & Nyam, K.L. 2016. Oxidative
stability of microencapsulated kenaf seed oil using co-extrusion technology. Journal
of American Oil Chemists’ Society 93(4): 607-615.
Chew, S.C., Tan, C.P. & Nyam, K.L. 2017.
Comparative study of crude and refined kenaf (Hibiscus cannabinus L.)
seed oil during accelerated storage. Food Science and Biotechnology 26(1):
63-69.
Chew, S.C., Tan, C.P., Long, K. & Nyam, K.L.
2016. Effect of chemical refining on the quality of kenaf (Hibiscus cannabinus)
seed oil. Industrial Crops and Products 89: 59-65.
Chew, S.C., Tan, C.P., Long, K. & Nyam, K.L.
2015. In-vitro evaluation of kenaf seed oil in chitosan coated-high
methoxyl pectin-alginate microcapsules. Industrial Crops and Products 76:
230-236.
Cho, S., Kim, J., Han, D., Lim, H.J., Yoon, M., Park, J., Yang,
H., Lee, S.H., Noh, B.Y., Park, E., Yoo, H., Baek, J. & Shin, E.C. 2015.
Thermal oxidative stability of corn oil in ultra-high temperature short-time
processed seasoned layer. Food Science and Biotechnology 24: 947-953.
Cintra,
D.E., Costa, A.V., Peluzio Mdo, C., Matta, S.C., Silva, M.J. & Costa, N.M.
2006. Lipid profile of rats fed high-fat diets based on flaxseed, peanut, trout
or chicken skin. Nutrition 22: 197-205.
Coetzee, R., Labuschagne, M.T. & Hugo, A. 2008. Fatty
acid and oil variation in seed from kenaf (Hibiscus cannabinus L.). Industrial
Crops and Products 27: 104-109.
Esuoso, K.O. & Odetokun, S.M. 1995. Proximate chemical
composition and possible industrial utilization of Biphiasapida seed
oils. Rivista Italina Delle Sostanze Grasse 72: 311-313.
Ghazani, S.M., García-Llatas, G. & Marangoni, A.G. 2013.
Minor constituents in canola oil processed by traditional and minimal refining
methods. Journal of American Oil Chemists’ Society 90: 743-756.
Grill, J.M., Ogle, J.W. & Miller, A.M. 2006. An
efficient and practical system for the catalytic oxidation of alcohols,
aldehydes, and α, β-unsaturated carboxylic acids. Journal of
Organic Chemistry 71: 9291-9296.
Gutierrez, F., Arnaud, T. & Garrido, A. 2011.
Contribution of polyphenols to the oxidative stability of virgin olive oil. Journal
of the Science of Food and Agriculture 81: 1463- 1470.
Iqbal, S. & Bhanger, M.I. 2007. Stabilization of
sunflower oil by garlic extract during accelerated storage. Food Chemistry 100:
246-254.
Kaco, H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, L.
& Jani, S.M. 2014. Properties of cellulose hydrogel from kenaf core
prepared via pre-cooled dissolving method. Sains Malaysiana 43(8):
1221-1229.
Kreps, F., Vrbiková, L. & Schmidt, Š. 2014.
Influence of industrial physical refining on tocopherol, chlorophyll and
beta-carotene content in sunflower and rapeseed oil. European Journal of
Lipid Science and Technology 116: 1572-1582.
Kumar, P.K.P. & Krishna, A.G.G. 2014. Physico-chemical
characteristics and nutraceutical distribution of crude palm oil and its
fractions. Grasas y Aceites 65: e018.
Ng, S.K., Tee, A.N., Lai, C.L.E., Tan, C.P., Long, K. &
Nyam, K.L. 2015. Anti-hypercholesterolemic effect of kenaf (Hibiscus
cannabinus L.) seed on high-fat diet Sprague Dawley rats. Asian Pacific
Journal of Tropical Medicine 8(1): 6-13.
Nor, F.M., Mohamed, S., Idris, N.A. & Ismail, R. 2008. Antioxidative
properties of Pandanus amaryllifolius leaf extracts in accelerated
oxidation and deep frying studies. Food Chemistry 110: 319-327.
Nyam, K.L., Tang, J.L.K. & Long, K. 2016. Anti-ulcer
activity of Hibiscus cannabinus and Hibiscus sabdariffa seeds in
ulcer-induced rats. International Food Research Journal 23(3):
1164-1172.
Nyam, K.L., Tan, C.H. & Long, K. 2015. Effect of
microwave pretreatment on stability of kenaf (Hibiscus cannabinus L.)
seed oil upon accelerated storage. International Food Research Journal 22(5):
1898-1905.
Nyam, K.L., Wong, M.M., Long, K. & Tan, C.P. 2013.
Oxidative stability of sunflower oils supplemented with kenaf seeds extract,
roselle seeds extract and roselle extract, respectively under accelerated
storage. International Food Research Journal 20(2): 695-701.
Nyam, K.L., Tan, C.P., Lai, O.M., Long, K. & Che Man,
Y.B. 2009. Physicochemical properties and bioactive compounds of selected seed
oils. LWT- Food Science and Technology 42(8): 1396-1403.
O’Connor, C.J., Lal, S.N.D. & Eyres, L. 2007. Handbook
of Australasian Edible Oils. Auckland: Oils and Fats Specialist Group of
NZIC.
Richards, A., Wijesunderaa, C. & Salisbury, P. 2005.
Evaluation of oxidative stability of canola oils by headspace analysis. Journal
of American Oil Chemists’ Society 82: 869-874.
Vaisali, C., Charanyaa, S., Belur, P.D. & Regupathi, I.
2015. Refining of edible oils: A critical appraisal of current and potential
technologies. International Journal of Food Science and Technology 50:
13-23.
Wan, P.J. 1995. Accelerated stability methods. In Methods
to Assess Quality and Stability of Oils and Fat-Containing Foods, edited by
Warner, K. & Eskin, N.A.M. Champaign: AOCS Press.
Zacchi, P. & Eggers, R. 2008. High-temperature
pre-conditioning of rapeseed: A polyphenol-enriched oil and the effect of
refining. European Journal of Lipid Science and Technology 110: 111-119.
Zakaria, S., Roslan, R., Amran, U.A., Chia, C.H. &
Bakaruddin, S.B. 2014. Characterization of residue from EFB and kenaf core
fibres in the liquefaction process. Sains Malaysiana 43(3): 429-435.
*Pengarang
untuk surat-menyurat; email: nyamkl@ucsiuniversity.edu.my
|