Sains Malaysiana 48(2)(2019): 329–335

http://dx.doi.org/10.17576/jsm-2019-4802-09

 

Oxidative Stability of Crude and Refined Kenaf (Hibiscus cannabinus L.) Seed Oil during Accelerated Storage

(Kestabilan Oksidatif bagi Minyak Biji Kenaf (Hibiscus cannabinus L.) Mentah dan Bertapis semasa Storan Pecut)

 

SOOK CHIN CHEW1, CHIN PING TAN2 & KAR LIN NYAM1*

 

1Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Food Technology, Faculty of Food Science and Technology, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 21 September 2017/Diterima: 31 Oktober 2018

 

ABSTRACT

Kenaf seed oil has been suggested to be used as edible oil but there is limited information available about the oxidative stability of refined kenaf seed oil. An oxidative stability test was performed on crude and refined kenaf seed oil under accelerated storage at 65ºC for 24 days. The results showed that refined oil underwent higher oxidation than the crude oil, as indicated by the peroxide value (40.55 meq/kg), p-Anisidine value (18.78) and total oxidation value (99.87) in refined oil at day 24. There was no significant difference in the free fatty acid value in refined oil during the accelerated storage. Oleic acid remained the most abundant in the fatty acid composition of kenaf seed oil, followed by linoleic acid and palmitic acid during storage. The unsaturated fatty acids decreased slightly coupled with a slight increase in the saturated fatty acids in kenaf seed oil during storage. Refining process decreased the oxidative stability of kenaf seed oil, but the refined kenaf seed oil was able to maintain good quality in free fatty acid value and fatty acid composition.

 

Keywords: Linoleic acid; oleic acid; refining process; total oxidation value

 

ABSTRAK

Minyak biji kenaf telah dicadangkan untuk digunakan sebagai minyak makan tetapi terdapat maklumat yang terhad tentang kestabilan oksidatif bagi minyak biji kenaf bertapis. Ujian kestabilan oksidatif telah dilakukan ke atas minyak biji kenaf mentah dan bertapis bawah dipercepatkan penyimpanan pada 65°C selama 24 hari. Hasil kajian menunjukkan minyak bertapis menjalani pengoksidaan lebih tinggi daripada minyak mentah seperti yang ditunjukkan oleh nilai peroksida (40.55 meq/kg), p-Anisidine nilai (18.78) dan jumlah nilai pengoksidaan (99.87) dalam minyak disempurnakan pada hari ke-24. Tiada perbezaan yang signifikan dalam lemak nilai asid dalam minyak yang ditapis semasa penyimpanan dipercepatkan. Asid oleik kekal yang paling banyak, diikuti oleh asid linoleik dan asid palmitik semasa penyimpanan. Asid lemak tak tepu menurun sedikit ditambah pula dengan sedikit peningkatan dalam asid lemak tepu dalam minyak biji kenaf semasa penyimpanan. Proses penapisan menurun kestabilan oksidatif bagi minyak biji kenaf, tetapi minyak benih kenaf yang disucikan dapat mengekalkan kualiti yang baik di bebas nilai asid lemak dan lemak komposisi asid.

 

Kata kunci: Asid linoleik; asid oleik; penapisan proses; pengoksidaan jumlah nilai

RUJUKAN

AOCS. 2000. Peroxide value acetic acid-chloroform Method Cd 8-53. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, edited by Firestone, D. Champaign: AOCS Press.

AOCS. 1998a. Free fatty acids in crude and refined oils method 26.042. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, edited by Firestone, D. Champaign: AOCS Press.

AOCS. 1998b. p-Anisidine value method Cd 18-90. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, edited by Firestone, D. Champaign: AOCS Press.

Besbes, S., Blecker, C., Deroanne, C., Lognay, G., Drira, N-E. & Attia, H. 2004. Quality changes and oxidative stability of date seed oil during storage. Food Science and Technology International 10: 333-338.

Brinkmann, B. 2000. Quality criteria of industrial frying oils and fats. European Journal of Lipid Science and Technology 102: 539-541.

Chew, S.C. & Nyam, K.L. 2016. Oxidative stability of microencapsulated kenaf seed oil using co-extrusion technology. Journal of American Oil Chemists’ Society 93(4): 607-615.

Chew, S.C., Tan, C.P. & Nyam, K.L. 2017. Comparative study of crude and refined kenaf (Hibiscus cannabinus L.) seed oil during accelerated storage. Food Science and Biotechnology 26(1): 63-69.

Chew, S.C., Tan, C.P., Long, K. & Nyam, K.L. 2016. Effect of chemical refining on the quality of kenaf (Hibiscus cannabinus) seed oil. Industrial Crops and Products 89: 59-65.

Chew, S.C., Tan, C.P., Long, K. & Nyam, K.L. 2015. In-vitro evaluation of kenaf seed oil in chitosan coated-high methoxyl pectin-alginate microcapsules. Industrial Crops and Products 76: 230-236.

Cho, S., Kim, J., Han, D., Lim, H.J., Yoon, M., Park, J., Yang, H., Lee, S.H., Noh, B.Y., Park, E., Yoo, H., Baek, J. & Shin, E.C. 2015. Thermal oxidative stability of corn oil in ultra-high temperature short-time processed seasoned layer. Food Science and Biotechnology 24: 947-953.

Cintra, D.E., Costa, A.V., Peluzio Mdo, C., Matta, S.C., Silva, M.J. & Costa, N.M. 2006. Lipid profile of rats fed high-fat diets based on flaxseed, peanut, trout or chicken skin. Nutrition 22: 197-205.

Coetzee, R., Labuschagne, M.T. & Hugo, A. 2008. Fatty acid and oil variation in seed from kenaf (Hibiscus cannabinus L.). Industrial Crops and Products 27: 104-109.

Esuoso, K.O. & Odetokun, S.M. 1995. Proximate chemical composition and possible industrial utilization of Biphiasapida seed oils. Rivista Italina Delle Sostanze Grasse 72: 311-313.

Ghazani, S.M., García-Llatas, G. & Marangoni, A.G. 2013. Minor constituents in canola oil processed by traditional and minimal refining methods. Journal of American Oil Chemists’ Society 90: 743-756.

Grill, J.M., Ogle, J.W. & Miller, A.M. 2006. An efficient and practical system for the catalytic oxidation of alcohols, aldehydes, and α, β-unsaturated carboxylic acids. Journal of Organic Chemistry 71: 9291-9296.

Gutierrez, F., Arnaud, T. & Garrido, A. 2011. Contribution of polyphenols to the oxidative stability of virgin olive oil. Journal of the Science of Food and Agriculture 81: 1463- 1470.

Iqbal, S. & Bhanger, M.I. 2007. Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chemistry 100: 246-254.

Kaco, H., Zakaria, S., Razali, N.F., Chia, C.H., Zhang, L. & Jani, S.M. 2014. Properties of cellulose hydrogel from kenaf core prepared via pre-cooled dissolving method. Sains Malaysiana 43(8): 1221-1229.

Kreps, F., Vrbiková, L. & Schmidt, Š. 2014. Influence of industrial physical refining on tocopherol, chlorophyll and beta-carotene content in sunflower and rapeseed oil. European Journal of Lipid Science and Technology 116: 1572-1582.

Kumar, P.K.P. & Krishna, A.G.G. 2014. Physico-chemical characteristics and nutraceutical distribution of crude palm oil and its fractions. Grasas y Aceites 65: e018.

Ng, S.K., Tee, A.N., Lai, C.L.E., Tan, C.P., Long, K. & Nyam, K.L. 2015. Anti-hypercholesterolemic effect of kenaf (Hibiscus cannabinus L.) seed on high-fat diet Sprague Dawley rats. Asian Pacific Journal of Tropical Medicine 8(1): 6-13.

Nor, F.M., Mohamed, S., Idris, N.A. & Ismail, R. 2008. Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. Food Chemistry 110: 319-327.

Nyam, K.L., Tang, J.L.K. & Long, K. 2016. Anti-ulcer activity of Hibiscus cannabinus and Hibiscus sabdariffa seeds in ulcer-induced rats. International Food Research Journal 23(3): 1164-1172.

Nyam, K.L., Tan, C.H. & Long, K. 2015. Effect of microwave pretreatment on stability of kenaf (Hibiscus cannabinus L.) seed oil upon accelerated storage. International Food Research Journal 22(5): 1898-1905.

Nyam, K.L., Wong, M.M., Long, K. & Tan, C.P. 2013. Oxidative stability of sunflower oils supplemented with kenaf seeds extract, roselle seeds extract and roselle extract, respectively under accelerated storage. International Food Research Journal 20(2): 695-701.

Nyam, K.L., Tan, C.P., Lai, O.M., Long, K. & Che Man, Y.B. 2009. Physicochemical properties and bioactive compounds of selected seed oils. LWT- Food Science and Technology 42(8): 1396-1403.

O’Connor, C.J., Lal, S.N.D. & Eyres, L. 2007. Handbook of Australasian Edible Oils. Auckland: Oils and Fats Specialist Group of NZIC.

Richards, A., Wijesunderaa, C. & Salisbury, P. 2005. Evaluation of oxidative stability of canola oils by headspace analysis. Journal of American Oil Chemists’ Society 82: 869-874.

Vaisali, C., Charanyaa, S., Belur, P.D. & Regupathi, I. 2015. Refining of edible oils: A critical appraisal of current and potential technologies. International Journal of Food Science and Technology 50: 13-23.

Wan, P.J. 1995. Accelerated stability methods. In Methods to Assess Quality and Stability of Oils and Fat-Containing Foods, edited by Warner, K. & Eskin, N.A.M. Champaign: AOCS Press.

Zacchi, P. & Eggers, R. 2008. High-temperature pre-conditioning of rapeseed: A polyphenol-enriched oil and the effect of refining. European Journal of Lipid Science and Technology 110: 111-119.

Zakaria, S., Roslan, R., Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014. Characterization of residue from EFB and kenaf core fibres in the liquefaction process. Sains Malaysiana 43(3): 429-435.

 

*Pengarang untuk surat-menyurat; email: nyamkl@ucsiuniversity.edu.my

 

 

 

 

sebelumnya