Sains Malaysiana 48(2)(2019): 425–433
http://dx.doi.org/10.17576/jsm-2019-4802-21
Penentuan Parameter Optimum bagi Rawatan Pengutuban
Elektrik ke
atas Seramik-Piezo Barium Titanat (BaTiO3) menggunakan Sistem Buatan Sendiri
(Determination of Optimum Parameter for
Electrical Poling Treatment on BaTiO3 Piezo-Ceramic
using Home-Built System)
NOR HUWAIDA
BINTI JANIL @ JAMIL1, MOHAMMAD
HAFIZUDDIN
BIN HJ JUMALI1*, ZALITA
BINTI ZAINUDDIN1, IZURA
BINTI IZZUDDIN1 & SOODKHET
POJPRAPAI2
1Pusat Pengajian
Fizik Gunaan,
Fakulti Sains dan
Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Kejuruteraan
Seramik, Institut
Kejuruteraan, Suranaree University
of Technology, Nakhon Ratchasima 30000, Thailand
Diserahkan: 18 Julai
2018/Diterima: 9 Oktober
2018
ABSTRAK
Kajian ini dijalankan bertujuan untuk menentukan nilai optimum bagi parameter rawatan pengutuban BaTiO3 sebagai
bahan seramik-piezo
dengan menggunakan sistem pengutuban DC buatan sendiri. Tiga parameter pengutuban utama yang telah dikaji adalah medan elektrik (Ep),
suhu (Tp)
dan masa (tp)
rawatan. Fasa tunggal seramik-piezo
BaTiO3 yang stabil
dalam struktur
hablur tetragon berjaya disediakan melalui persinteran keadaan pepejal konvensional. Pemilihan julat Ep dan Tp untuk rawatan pengutuban
masing-masing adalah
berdasarkan ujian awal pengukuran histeresis feroelektrik dan penentuan suhu
Curie, Tc. Keputusan kajian mendapati BaTiO3 mempunyai nilai medan paksaan, Ec yang
kecil (~2.42 kV/cm), pengutuban
baki, Pr ~4.90
μC/cm2 dan pengutuban maksimum, Pm yang
besar (~17.59 μC/cm2)
dengan Tc pada 139°C. Berdasarkan julat parameter kajian, nilai pemalar piezoelektrik,
d33 tertinggi
~190 pC/N diperoleh
dengan magnitud medan elektrik pengutuban iaitu 1.5Ec pada suhu 60°C selama 10 min. Struktur dan morfologi BaTiO3 selepas rawatan pengutuban juga dikaji. Sistem pengutuban yang dibangunkan menyusun semula penjajaran domain secara efektif dan parameter rawatan optimum didapati setanding dengan kajian BaTiO3 lain.
Kata kunci:
BaTiO3; feroelektrik; piezoelektrik; seramik bebas plumbum
ABSTRACT
This study has been conducted
to determine the optimum value for poling treatment parameters of
BaTiO3 as
piezo-ceramic material using a home-built DC poling
system. The three main poling parameters that has
been studied were electric field (Ep), temperature (Tp) and time (tp) treatments. Single phase
BaTiO3 piezo-ceramic
stabilized in tetragonal structure was successfully prepared using
conventional solid-state sintering. The selection range
of Ep and
Tp for
poling treatment were based on prior ferroelectric hysteresis
measurement and determination of Curie temperature, Tc tests,
respectively. The results showed that BaTiO3 has
low coercive field, Ec (~2.42
kV/cm), remanent polarization, Pr ~4.90
μC/cm2 and
large maximum polarization, Pm (~17.59 μC/cm2)
values with Tc of
139°C. Based on the studied parameter ranges, the highest piezoelectric
constant, d33 value
~190 pC/N was obtained with poling electric
field magnitude of 1.5Ec at
60°C for 10 min. Structure and morphology BaTiO3 after
poling treatment were also investigated. Developed poling system
effectively reorient the domain alignments and the optimum
treatment parameters were comparable with other BaTiO3 studies.
Keywords: BaTiO3; ferroelectric;
lead-free ceramics; piezoelectric
RUJUKAN
Arlt, G. 1990. The influence of microstructure
on the properties of ferroelectric ceramics. Ferroelectrics 104:
217-227.
Bernard, J., Benčan,
A., Rojac, T., Holc,
J., Malič, B. & Kosec, M. 2008.
Low-temperature sintering of K0.5Na0.5NbO3 ceramics. Journal
of the American Ceramic Society 91(7): 2409-2411.
Birol, H., Damjanovic, D. & Setter,
N. 2006. Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. Journal of the European Ceramic Society
26(6): 861-866.
Cao, L., Zhou, C., Xu, J., Li, Q.,
Yuan, C. & Chen, G. 2016. Effect of poling on polarization alignment,
dielectric behavior and piezoelectricity development in polycrystalline
BiFeO3- BaTiO3 ceramics. Physica
Status Solidi A 213(1): 52-59.
Chen, J. Tan, X., Jo, W. & Rödel, J. 2009. Temperature dependence of piezoelectric properties
of high-Tc Bi(Mg˝Ti˝) O3-PbTiO3.
Journal of Applied Physics 106: 034109.
Dong, L., Stone, D.S. & Lakes,
R.S. 2012. Enhanced dielectric and piezoelectric properties of xBaZrO3-(1-x)BaTiO3 ceramics. Journal of Applied Physics 111: 084107.
Du, H.L., Tang, F.S., Li, Z.M.,
Zhou, W.C., Qu, S.B. & Pei, Z.B. 2006. Effect of poling condition
on piezoelectric properties of (K0.5Na0.5)NbO3
ceramics. Transactions of Nonferrous Metals Society of China
16: s462-s465.
Gao, F., Zhang, C.S., Liu, X.C.,
Cheng, L.H. & Tian, C.S. 2007. Microstructure and piezoelectric
properties of textured (Na0.84K0.16)0.5Bi0.5TiO3 lead-free ceramics.
Journal of the European Ceramic Society 27(12): 3453-3458.
Guo, H., Ma, C., Liu, X. & Tan,
X. 2013. Electric poling below coercive field for large piezoelectricity.
Applied Physics Letters 102(9): 092902.
Huan, Y., Wang, X., Fang, F. & Li,
L. 2013. Grain size effects on piezoelectric properties and domain
structure of BaTiO3 ceramics prepared by two‐step sintering.
Journal of the American Ceramic Society 96(11): 3369-3371.
Izzuddin, I., Jumali,
M.H.H., Zalita, Z., Huwaida,
J.N. & Awang, R. 2016. Influence of
crystal structural orientation on impedance and piezoelectric properties
of KNN ceramic prepared using sol-gel method. Sains
Malaysiana 45(8): 1281-1287.
Jaffe, B., Cook, W.R. & Jaffe,
H. 1971. Piezoelectric Ceramics. London. Academic Press Inc.
Jamil, N.H.J., Izzuddin, I., Zainuddin, Z. &
Jumali, M.H.H. 2015. Microstructural studies
of nanocrystalline barium zirconium titanate
(BZT) for piezoelectric applications. UKM FST Postgraduate Colloquium:
Proceedings 1678: 040008.
Jumali, M.H.H., Mohd, M.R., Wee, N.Y.,
Yahaya, M. & Salleh, M.M. 2010.
Kelakuan pengesanan
tekanan bagi seramik
natrium bismut
titanat. Sains Malaysiana 39(4): 621-626.
Kamel, T.M., Kools, F.X.N.M. & de With, G. 2007. Poling of soft piezoceramic PZT. Journal of the European Ceramic Society
27: 2471-2479.
Kumar, A., Prasad, V.V.B., Raju,
K.C.J. & James, A.R. 2015. Optimization of poling parameter
of mechanically processed PLZT 8/60/40 ceramics based on dielectric
and piezoelectric studies. The European Physical Journal B 88:
2871-2879.
Li, Q., Zhang, M.H., Zu, Z.X., Wang, K., Zhou, J.S., You, F.Z. & Li, J.F. 2017.
Poling engineering of (K,Na)NbO3-based
lead free piezoceramics with orthorhombic-tetragonal
coexisting phases. Journal of Materials Chemistry C 5: 549-556.
Liu, W. & Ren, X. 2009. Large
piezoelectric effect in Pb-free ceramics.
Physical Review Letters 103: 257602.
Ma, N., Zhang, B.P., Yang, W.G.
& Guo, D. 2012. Phase structure and
nano-domain in high performance of BaTiO3 piezoelectric ceramics.
Journal of the European Ceramic Society 32(5): 1059-1066.
Marsilius, M., Granzow, T. & Jones, J.L.
2011. Effect of electrical and mechanical poling history on domain
orientation and piezoelectric properties of soft and hard PZT ceramics.
Science and Technology of Advanced Materials 12(1): 015002.
Okayasu, M. & Watanabe, K. 2016.
A study of the electrical power generation properties of a lead
zirconate titanate piezoelectric
ceramic. Ceramics International 42(12): 14049-14060.
Özen, M., Mertens,
M., Snijkers, F. & Cool, P. 2016.
Hydrothermal synthesis and formation mechanism of tetragonal barium
titanate in a highly concentrated alkaline
solution. Ceramics International 42(9): 10967-10975.
Sangawar, S.R., Praveenkumar,
B., Divya, P. & Kumar, H.H. 2015.
Fe doped hard PZT ceramics for high power SONAR transducers. Materials
Today: Proceeding 2: 2789-2794.
Schmitt, L.A., Kungl, H., Hinterstein, M., Riekehr, L., Kleebe, H.J., Hoffmann,
M.J., Rüdiger, A.E. & Fuess,
H. 2014. The impact of heat treatment on the domain configuration
and strain behavior in Pb[Zr,Ti]O3 ferroelectrics. Journal
of the American Ceramic Society 98(1): 269-277.
Shao, S., Zhang, J., Zhang, Z.,
Zheng, P., Zhao, M., Li, J. & Wang, C. 2008. High piezoelectric
properties and domain configuration in BaTiO3 ceramics obtained
through the solid-state reaction route. Journal of Physics D:
Applied Physics 41: 125408.
Shin, D.J., Jeong,
S.J., Seo, C.E., Cho, K.H. & Koh,
J.H. 2015. Multi-layered piezoelectric energy harvesters based on
PZT ceramic actuators. Ceramics International 41(1): S686-S690.
Shrout, R., Eitel,
R.E. & Randall, C.A. 2002. Piezoelectric Materials in Devices,
edited by Setter, N. Switzerland: EPFL Swiss Federal Institute of
Technology.
Takpara, R., Duquennoy,
M., Ouaftouh, M., Courtois, C., Jenot,
F. & Rguiti, M. 2017. Optimization
of PZT ceramic IDT sensors for health monitoring of structure. Ultrasonics
79: 96-104.
Wang, J.C., Zheng, P., Yin, R.Q.,
Zheng, L.M., Du, J., Zheng, L., Deng, J.X., Song, K.X. & Qin,
H.B. 2015. Different piezoelectric grain size effects in BaTiO3
ceramics. Ceramics International 41(10)B:
14165-14171.
Wang, T., He, L., Deng, Y., Zheng,
Q., Xie, F., Xu, C. & Lin, D. 2017.
Defect-driven evolution of piezoelectric and ferroelectric properties
in CuSb2O6-doped K0.5Na0.5NbO3 lead-free ceramics. Journal of
the American Ceramic Society 100(12): 5610-5619.
Xu, Q., Chen, X., Chen, W., Chen,
S., Kim, B. & Lee, J. 2005. Synthesis, ferroelectric and piezoelectric
properties of some (Na0.5Bi0.5)TiO3 system
compositions. Materials Letters 59(19-20): 2437-2441.
Xue, P., Hu, Y., Xia, W., Wu, H. &
Zhu, X. 2017. Molten-salt synthesis of BaTiO3 powders and their
atomic-scale structural characterization. Journal of Alloys and
Compounds 695: 2870-2877.
Zhao, X., Liu, W., Chen, W. &
Li, S. 2015. Preparation and properties of BaTiO3 ceramics from
the fine ceramic powder. Ceramics International 41(1): S111-S116.
Zheng, P., Zhang, J.L., Tan, Y.Q.
& Wang, C.L. 2012. Grain-size effects on dielectric and piezoelectric
properties of poled BaTiO3 ceramics. Acta
Materialia 60(13-14): 5022-5030.
Zolkepli, M.F.A.B. & Zainuddin, Z. 2017. Structural, magnetic and electrical properties
of barium titanate and magnesium ferrite
composites. Sains Malaysiana
46(6): 967-973.
*Pengarang
untuk surat-menyurat;
email: hafizhj@ukm.edu.my
|