Sains Malaysiana 48(3)(2019): 523–531
http://dx.doi.org/10.17576/jsm-2019-4803-04
Structural
Properties, Production, and Commercialisation of Invertase
(Sifat
Struktur, Pengeluaran dan Pengkomersialan Invertase)
WEI CHENG PANG1, AIZI NOR MAZILA RAMLI1,2*
& NUR DINI JOHARI1
1Faculty of Industrial
Science & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300
Gambang, Kuantan, Pahang Darul Makmur, Malaysia
2Bio Aromatic Research Centre of Excellence, Universiti
Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
Diserahkan: 30 April 2018/Diterima: 8 Januari 2019
ABSTRACT
The knowledge gained from yeast fermentation made invertase one of
the earliest exploited enzymes in human history. Invertase functions as
carbohydrases by hydrolysing sucrose into its simplest unit. Extensive studies
on invertase have made it well-characterised through the discovery of its
existence in a variety of living organisms. It is interesting to study the
different types of invertase from either the same or different origins as they
might have distinct properties and could possess unique characteristics. With
the advancement in technology, the three-dimensional structure, catalytic
domain, and mechanism of invertase action have been discovered. Furthermore, it
is important to understand how this enzyme has been produced via fermentation
or recombinant technology methods. Finally, invertase has been employed in
several important industries and its future commercialisation is promising.
Keywords: Commercialisation; invertase; production; structural
analysis
ABSTRAK
Pengetahuan yang diperoleh daripada penapaian ragi telah
menjadikan invertase sebagai salah satu enzim yang paling awal dieksploitasi di
dalam sejarah manusia. Invertase berfungsi sebagai karbohidrase dengan
menghidrolisis sukrosa kepada glukosa dan fruktosa. Pelbagai kajian mengenai
invertase dan penemuannya dalam pelbagai organisma telah mendalamkan pemahaman
tentang invertase. Kajian mengenai invertase daripada punca yang sama atau
berlainan adalah menarik kerana ia terdapat ciri-ciri yang berbeza dan unik.
Dengan kemajuan bidang teknologi, struktur tiga dimensi, domain pemangkin dan
mekanisme tindakan invertase telah dikaji. Tambahan pula, pengetahuan tentang bagaimana
enzim ini dihasilkan melalui kaedah penapaian atau kaedah rekombinan juga
sangat penting. Akhirnya, invertase telah digunakan dalam pelbagai sektor
industri dan pengkomersilannya adalah sangat baik.
Kata kunci: Analisis struktur; invertase; pemasaran;
pengeluaran
RUJUKAN
Aburigal, A.A.A., Elkhalifa, E.A., Sulieman,
A.M.E. & Elamin, H.B. 2014. Extraction and partial kinetic properties of
invertase from Schizosaccharomyces pombe. International Journal of
Food Science and Nutrition Engineering 4(3): 80-85.
Addezio, F.D., Yoriyaz, E.J., Maria, C. &
Vitolo, M. 2014. Sucrose hydrolysis by invertase using a membrane reactor:
Effect of membrane cut-off on enzyme performance. Brazilian Journal of
Pharmaceutical Sciences 50(2): 257-259.
Ahmed, K., Valeem, E.E., Mahmood, T., Mahmood,
I. & Haq, Q.U. 2015. Optimal cultural conditions for industrial enzyme
production by using shaken flask technique of submerged fermentation. FUUAST
Journal of Biology 5(1): 21-26.
Aksu, K. & Kutsal, T. 1986. Lactic acid
production from molasses utilizing Lactobacillus delbrueckii and
invertase together. Biotechnology Letters 8(3): 157-160.
Al-Hagar, O.E.A., Ahmed, A.S. & Hassan, I.
2015. Invertase production by irradiated Aspergillus niger OSH5 using
agricultural wastes as carbon source. British Microbiology Research Journal 6(3):
135-146.
Alberto, F., Jordi, E., Henrissat, B. &
Czjzek, M. 2006. Crystal structure of inactivated Thermotoga maritima invertase
in complex with the trisaccharide substrate raffinose. Biochemical Journal 395(3):
457-462.
Alberto, F., Bignon, C., Sulzenbacher, G.,
Henrissat, B. & Czjzek, M. 2004. The three-dimensional structure of
invertase (β-fructosidase) from Thermotoga maritima reveals a
bimodular arrangement and an evolutionary relationship between retaining and
inverting glycosidases. Journal of Biological Chemistry 279(18):
18903-18910.
Alméciga-Díaz, C.J., Gutierrez, A.M., Bahamon,
I., Rodríguez, A., Rodríguez, A.M. & Sánchez, O.F. 2011. Computational
analysis of the fructosyltransferase enzymes in plants, fungi and bacteria. Gene 484(1-2): 26-34.
Altenbach, D. & Ritsema, T. 2007.
Structure-function relations and evolution of fructosyltransferases. In Recent
Advances in Fructooligosaccharides Research, edited by Shiomi, N.,
Benkeblia, N. & Onodera, N. Kerala, India: Signpost. pp. 135-156.
Alves, J.N.O., Jorge, J.A. & Guimarães,
L.H.S. 2013. Production of invertases by anamorphic (Aspergillus nidulans)
and teleomorphic (Emericela nidulans) fungi under submerged fermentation
using rye flour as carbon source. Advances in Microbiology 3: 421-429.
Ashraf, H. & Bilal, Z.E.H. 2015.
Biosynthesis, partial purification and characterization of invertase through
carrot (Daucus carota L.) peels. Journal of Biochemical Technology 6(1):
867-874.
Ayre, G.L. 1967. The relationships between food
and digestive enzymes in five species of ants (Hymenoptera: Formicidae). The
Canadian Entomologist 99(4): 408-411.
Bagal-Kestwal, D., Kestwal, R.M. & Chiang,
B.H. 2015. Invertase-nanogold clusters decorated plant membranes for
fluorescence-based sucrose sensor. Journal of Nanobiotechnology 13: 30.
Belcarz, A., Ginalska, G., Lobarzewski, J. & Penel, C. 2002.
The novel non-glycosylated invertase from Candida utilis (the properties
and the conditions of production and purification). Biochimica et Biophysica
Acta - Protein Structure and Molecular Enzymology 1594(1): 40-53.
Benkeblia, N.,
Onodera, S., Yoshihira, T., Kosaka, S. & Shiomi, N. 2004. Effect of
temperature on soluble invertase activity, and glucose, fructose and sucrose
status of onion bulbs (Allium cepa) in store. International Journal
of Food Sciences and Nutrition 55(4): 325-331.
Bergh, M.L., Cepko, C.L., Wolf, D. & Robbins, P.W. 1987.
Expression of the Saccharomyces cerevisiae glycoprotein invertase in
mouse fibroblasts: Glycosylation, secretion, and enzymatic activity. In Proceedings
of the National Academy of Sciences of the United States of America 84:
3570-3574.
Bhatti, H.N., Asgher, M., Abbas, A., Nawaz, R. & Sheikh,
M.A. 2006. Studies on kinetics and thermostability of a novel acid invertase
from Fusarium solani. Journal of Agricultural and Food Chemistry 54(13):
4617-4623.
Bujacz, A., Jedrzejczak-Krzepkowska, M., Bielecki, S.,
Redzynia, I. & Bujacz, G. 2011. Crystal structures of the apo form of
β-fructofuranosidase from Bifidobacterium longum and its complex
with fructose. FEBS Journal 278(10): 1728-1744.
Carlos Martínez, d.R. 1990. Dietary, phylogenetic, and
ecological correlates of intestinal sucrase and maltase activity in birds. Physiological
Zoology 63(5): 987-1011.
Carnie, J.A. & Porteous, J.W. 1962. The invertase
activity of rabbit small intestine. Biochemical Journal 85: 450-456.
Chandra, A., Jain, R. & Solomon, S. 2012. Complexities
of invertases controlling sucrose accumulation and retention in sugarcane. Current
Science 102(6): 857-866.
Chaudhary, S., Sagar, S., Kumar, M., Sengar, R.S. &
Tomar, A. 2015. The use of enzymes in food processing: A review. South Asian
Journal of Food Technology and Environment 1(3&4): 190-210.
Chen, T.H., Huang, Y.C., Yang, C.S., Yang, C.C., Wang, A.Y.
& Sung, H.Y. 2009. Insights into the catalytic properties of bamboo
vacuolar invertase through mutational analysis of active site residues. Phytochemistry 70(1): 25-31.
Deryabin, A.N., Berdichevets, I.N., Burakhanova, E.A. &
Trunova, T.I. 2014. Characteristics of extracellular invertase of Saccharomyces
cerevisiae in heterologous expression of the Suc2 gene in Solanum
tuberosum plants. Biology Bulletin 41(1): 24-30.
Desai, P.N., Shrivastava, N. & Padh, H. 2010. Production
of heterologous proteins in plants: Strategies for optimal expression. Biotechnology
Advances 28(4): 427-435.
Dominguez, A.L., Rodrigues, L.R., Lima, N.M. & Teixeira,
J.A. 2013. An overview of the recent developments on fructooligosaccharide
production and applications. Food and Bioprocess Technology 6(12): 1-14.
Dorn, M.E., Silva, M.B., Buriol, L.S. & Lamb, L.C. 2014.
Three-dimensional protein structure prediction: Methods and computational
strategies. Computational Biology and Chemistry 53: 251-276.
Esawy, M.A., Kansoh, A.L., Kheiralla, Z.H., Ahmed, H.E.,
Kahil, T.A.K. & El-Hameed, E.K. 2014. Production and immobilization of
halophilic invertase produced from honey isolate Aspergillus niger EM77
(KF774181). International Journal of Biotechnology for Wellness Industries 3:
36-45.
Fotopoulos, V. 2005. Plant invertases: Structure, function
and regulation of a diverse enzyme family. Journal of Biological Research 4:
127-137.
Galant, A.L., Kaufman, R.C. & Wilson, J.D. 2015.
Glucose: Detection and analysis. Food Chemistry 188: 149-160.
Gomes, A.R., Byregowda, S.M., Veeregowda, B.M. &
Balamurugan, V. 2016. An overview of heterologous expression host systems for
the production of recombinant proteins. Advances in Animal and Veterinary
Sciences 4(7): 346-356.
Guimarães, L.H.S. 2012. Carbohydrates from biomass: Sources
and transformation by microbial enzymes. In Carbohydrates - Comprehensive
Studies on Glycobiology and Glycotechnology, edited by Chang, C.F. Belgium:
Intech. pp. 441-458.
Gurung, N., Ray, S., Bose, S. & Rai, V. 2013. A broader
view: Microbial enzymes and their relevance in industries, medicine, and
beyond. BioMed Research International 2013: 329121.
Heil, M., Büchler, R. & Boland, W. 2005. Quantification
of invertase activity in ants under field conditions. Journal of Chemical
Ecology 31(2): 431-437.
Hsiao, C.C., Fu, R.H. & Sung, H.Y. 2002. A novel bound
form of plant invertase in rice suspension cells. Botanical Bulletin of
Academia Sinica 43: 115-122.
Hsieh, C.W., Liu, L.K., Yeh, S.H., Chen, C.F., Lin, H.I.,
Sung, H.Y. & Wang, A.Y. 2006. Molecular cloning and functional
identification of invertase isozymes from green bamboo Bambusa oldhamii. Journal of Agricultural and Food Chemistry 54: 3101-3107.
Khandekar, D.C., Palai, T., Agarwal, A. & Bhattacharya,
P.K. 2014. Kinetics of sucrose conversion to fructo-oligosaccharides using
enzyme (invertase) under free condition. Bioprocess and Biosystems Engineering 37(12): 2529-2537.
Kotwal, S.M. & Shankar, V. 2009. Immobilized invertase. Biotechnology
Advances 27(4): 311-322.
Kulshrestha, S., Tyagi, P., Sindhi, V. & Yadavilli, K.S.
2013. Invertase and its applications - a brief review. Journal of Pharmacy
Research 7(9): 792-797.
Kumar, R. & Kesavapillai, B. 2012. Stimulation of
extracellular invertase production from spent yeast when sugarcane pressmud
used as substrate through solid state fermentation. SpringerPlus 1: 81.
Kurakake, M., Masumoto, R., Maguma, R., Kamata, A., Saito,
E., Ukita, N. & Komaki, T. 2010. Production of fructooligosaccharides by
β-fructofuranosidases from Aspergillus oryzae KB. Journal of
Agricultural and Food Chemistry 58(1): 488-492.
Lammens, W., Le Roy, K., Schroeven, L., Van Laere, A.,
Rabijns, A. & Van den Ende, W. 2009. Structural insights into glycoside
hydrolase family 32 and 68 enzymes: Functional implications. Journal of
Experimental Botany 60(3): 727-740.
Lammens, W., Le Roy, K., Van Laere, A., Rabijns, A. &
Van den Ende, W. 2008. Crystal structures of Arabidopsis thaliana cell-wall
invertase mutants in complex with sucrose. Journal of Molecular Biology 377(2):
378-385.
Li, S., Yang, X., Yang, S., Zhu, M. & Wang, X. 2012.
Technology prospecting on enzymes: Application, marketing and engineering. Computational
and Structural Biotechnology Journal 2(3): e201209017.
Lincoln, L. & More, S.S. 2017. Bacterial invertases:
Occurrence, production, biochemical characterization, and significance of
transfructosylation. Journal of Basic Microbiology 57(10): 803-813.
Liu,
C., Xu, Z., Cai, S. & Xiong, Z. 2015. CDna cloning, heterologous expression
and characterization of a cell wall invertase from copper tolerant population
of Elsholtzia haichowensis. Biologia (Poland) 70(8): 1063-1069.
Madhanasundareswari,
K. & Jeyachitra, K. 2015. Production and optimization of growth conditions
for invertase enzyme by Aspergillus in solid state fermentation (SSF)
using carrot peel as substrate. SIRJ-APBBP 2(1): 16-22.
Maiorano, A.E., Piccoli, R.M., da Silva, E.S. & de
Andrade Rodrigues, M.F. 2008. Microbial production of fructosyltransferases for
synthesis of pre-biotics. Biotechnology Letters 30(11): 1867-1877.
Marepally, L. 2017. Purification and characterization of
invertase from the midgut of fifth instar larvae of Anthereae mylitta Drury
(Daba TV). International Journal of Recent Scientific Research 8(6):
17330-17334.
Mehta, K. & Duhan, J.S. 2014. Production of invertase
from Aspergillus niger using fruit peel waste as a substrate. International
Journal of Pharma and Bio Sciences 5(2): 353-360.
Michel, M.R., Rodríguez-Jasso, R.M., Aguilar, C.N.,
Gonzalez- Herrera, S.M., Flores- Gallegos, A.C. & Rodríguez-Herrera, R.
2016. Fructosyltransferase sources, production, and applications for prebiotics.
In Production Probiotics and Prebiotics in Human Nutrition and Health,
edited by Rao, V. Belgium: Intech. pp. 169-189.
Mohandesi, N., Siadat, S.O.R., Haghbeen, K. & Hesampour,
A. 2016. Cloning and expression of Saccharomyces cerevisiae SUC2 gene in
yeast platform and characterization of recombinant enzyme biochemical
properties. 3 Biotech 6: 128-138.
Nadeem, H., Rashid, M.H., Siddique, M.H., Azeem, F.,
Muzammil, S., Javed, M.R., Ali, M.A., Rasul, I. & Riaz, M. 2015. Microbial
invertases: A review on kinetics, thermodynamics, physiochemical properties. Process
Biochemistry 50(8): 1202-1210.
Nisha, S., Karthick, A. & Gobi, N. 2012. A review on
methods, application and properties of immobilized enzyme. Chemical Science
Review and Letters 1(3): 148-155.
Niu, J.Q., Wang, A.Q., Huang, J.L., Yang, L.T. & Li,
Y.R. 2014. Isolation, characterization and promoter analysis of cell wall
invertase gene SoCIN1 from sugarcane (Saccharum Spp.). Sugar Tech 17(1):
65-76.
Ohara, A., de Castro, R.J.S., Nishide, T.G., Dias, F.F.G.,
Bagagli, M.P. & Sato, H.H. 2015. Invertase production by Aspergillus
niger under solid state fermentation: Focus on physical-chemical
parameters, synergistic and antagonistic effects using agro-industrial wastes. Biocatalysis
and Agricultural Biotechnology 4(4): 645-652.
Palomares, L.A., Estrada-Mondaca, S. & Ramírez, O.T.
2004. Production of recombinant proteins: Challenges and solutions. In Recombinant
Gene Expression, edited by Balbás, P. & Lorence, A. Methods in
Molecular Biology 267: 15-52.
Qureshi, A.S., Khushk, I., Ali, C.H., Majeed, H. &
Ahmad, A. 2017. Production of invertase from Saccharomyces
cerevisiae Angel using date syrup as a cost effective carbon source. African Journal of Biotechnology 16(15): 777-781.
Raju, A.I.C.H., Pulipati, K. & Jetti, A. 2016.
Production of invertase by Aspergillus niger under solid state
fermentation using orange fruit peel as substrate. Advances in Crop Science
and Technology 4: 247.
Rashad, M.M. & Nooman, M.U. 2009. Production,
purification and characterization of extracellular invertase from Saccharomyses
cerevisiae NRRL Y-12632 by solid-state fermentation of red carrot residue. Australian
Journal of Basic and Applied Sciences 3(3): 1910-1919.
Ravindran, R. & Jaiswal, A. 2016. Microbial enzyme
production using lignocellulosic food industry wastes as feedstock: A review. Bioengineering 3(4): 30.
Renge, V.C., Khedkar, S.V. & Nandurkar, N.R. 2012.
Enzyme synthesis by fermentation method: A review. Scientific Reviews and
Chemical Communications 2(4): 585-590.
Ricks, B.L. & Vinson, S.B. 1972. Digestive enzymes of
the imported fire ant, Solenopsis richteri (Hymenoptera: Formicidae). Entomologia
Experimentalis et Applicata 15: 329-334.
Sainz-Polo, M.A., Ramírez-Escudero, M., Lafraya, A.,
González, B., Marín-Navarro, J., Polaina, J. & Sanz-Aparicio, J. 2013.
Three-dimensional structure of Saccharomyces invertase: Role of a
non-catalytic domain in oligomerization and substrate specificity. Journal
of Biological Chemistry 288(14): 9755-9766.
Schroeven, L., Lammens, L., Van Laere, A. & Van den
Ende, W. 2008. Transforming wheat vacuolar invertase into a high affinity
sucrose: Sucrose 1-fructosyltransferase. New Phytologist 180(4):
822-831.
Shah, H.S., Patel, C.M. & Parikh, S.C. 2016. Production
of invertase from bacteria by using waste jaggery. The Microbes 3:
19-23.
Shankar, T., Thangamathi, P., Rama, R. & Sivakumar, T.
2014a. Characterization of invertase from Saccharomyces cerevisiae MK
obtained from toddy sample. Journal of Bioprocessing and Chemical
Engineering 2(1): 1-6.
Shankar, T., Thangamathi, P., Rama, R. & Sivakumar, T.
2014b. Characterization of invertase from Saccharomyces crevisiae MTCC
170. African Journal of Microbiology Research 8(13): 1385-1393.
Shinde, V., Deshmukh, S. & Bhoyar, M.G. 2015.
Applications of major enzymes in food industry. Indian Farmer 2(6):
497-502.
Sundarram, A. & Murthy, T.P.K. 2014. α -Amylase
production and applications: A review. Journal of Applied &
Environmental Microbiology 2(4): 166-175.
Takegawa, K., Tohda, H., Sasaki, M., Idiris, A., Ohashi, T.,
Mukaiyama, H., Giga-Hama, Y. & Kumagai, H. 2009. Production of heterologous
proteins using the fission-yeast (Schizosaccharomyces pombe) expression
system. Biotechnology and Applied Biochemistry 53(4): 227-235.
Tauzin, A.S. & Giardina, T. 2014. Sucrose and
invertases, a part of the plant defense response to the biotic stresses. Frontiers
in Plant Science 5: 1-8.
Ueno, T., Ozawa, Y., Ishikawa, M., Nakanishi, K. &
Kimura, T. 2003. Lactic acid production using two food processing wastes,
canned pineapple syrup and grape invertase, as substrate and enzyme. Biotechnology
Letters 25(7): 573-577.
Uma, C., Gomathi, D., Ravikumar, G., Kalaiselvi, M. &
Palaniswamy, M. 2012. Production and properties of invertase from a Cladosporium
cladosporioides in SmF using pomegranate peel waste as substrate. Asian
Pacific Journal of Tropical Biomedicine 2: 605-611.
Uma, C., Gomathi, D. & Gopalakrishnan, V.K. 2010. Fungal
invertase as aid for production of ethanol from sugarcane bagasse. Research
Journal of Microbiology 5(10): 980-985.
Voegele,
R.T., Wirsel, S., Möll, U., Lechner, M. & Mendgen, K. 2006. Cloning and
characterization of a novel invertase from the obligate biotroph Uromyces
fabae and analysis of expression patterns of host and pathogen invertases
in the course of infection. Molecular Plant-Microbe Interactions 19(6):
625-634.
Van Wyk, N., Trollope,
K.M., Steenkamp, E.T., Wingfield, B.D. & Volschenk, H. 2013. Identification
of the gene for β-fructofuranosidase from Ceratocystis moniliformis CMW
10134 and characterization of the enzyme expressed in Saccharomyces
cerevisiae. BMC Biotechnology 13: 100.
Xie, J., Cai, K., Hu, H.X., Jiang, Y.L., Yang, F., Hu, P.F.,
Cao, D.D., Li, W.F., Chen, Y. & Zhou, C.Z. 2016. Structural analysis of the
catalytic mechanism and substrate specificity of Anabaena alkaline
invertase InvA reveals a novel glucosidase. Journal of Biological Chemistry 291(49):
25667-25677.
Yao, Y., Wu, X.H., Geng, M.T., Li, R.M., Liu, J., Hu, X.W.
& Guo, J.C. 2014. Cloning, 3D modeling and expression analysis of three
vacuolar invertase genes from cassava (Manihot esculenta Crantz). Molecules 19(5): 6228-6245.
Yesilirmak, F. & Sayers, Z. 2009. Heterelogous
expression of plant genes. International Journal of Plant Genomics 2009:
296482.
Zárate, V. & Belda, F. 1996. Characterization of the
heterologous invertase produced by Schizosaccharomyces pombe from the
SUC2 gene of Saccharomyces cerevisiae. The Journal of Applied
Bacteriology 80(1): 45-52.
Zhang, J., Scrivener, A.M., Slaytor, M. & Rose, H.A.
1993. Diet and carbohydrase activities in three cockroaches, Calolampra
elegans Roth and Princis, Geoscapheus dilatatus Saussure and Panesthia
cribrata Saussure. Comparative Biochemistry and Physiology - Part A:
Physiology 104(1): 155-161.
Zouaoui, B., Ghalem, B.R., Djillali, B. & Fatima, S.
2016. Characterization of partially purified extracellular thermostable
invertase by Streptococcus Sp. isolated from the date. Bulletin of
Environment, Pharmacology and Life Sciences 5(9): 65-72.
*Pengarang
untuk surat-menyurat; email: aizinor@ump.edu.my
|