Sains Malaysiana 48(3)(2019): 533–541
http://dx.doi.org/10.17576/jsm-2019-4803-05
Assessment
of Biochemical Changes in Spinach (Spinacea oleracea L.) Subjected to
Varying Water Regimes
(Penilaian
Perubahan Biokimia dalam Bayam (Spinacea oleracea L.) Tertakluk kepada
Rejim Air Berbeza)
MUNIFA JABEEN1, NUDRAT AISHA AKRAM1*, MUHAMMAD ASHRAF2,3 & ANIQA AZIZ1
1Department
of Botany, Government College University, Faisalabad, Pakistan
2Pakistan
Science Foundation, Islamabad, Pakistan
3Department
of Botany and Microbiology, King Saud University, Saudi Arabia
Diserahkan:
4 Januari 2018/Diterima: 30 Disember 2018
ABSTRACT
It is known that leafy vegetables including spinach (Spinacea oleracea L.) contain relatively high
amount of water, therefore, their water requirement during the life cycle is
comparatively more than the other vegetables. In addition, there is an
association between osmoprotection and antioxidants with reference to drought
stress tolerance. Keeping in mind these facts, the present study was conducted
to assess the changes in plant growth, osmoprotectants, chlorophyll pigments
and activities/levels of antioxidative system in spinach (Spinacea oleracea L.) grown under varying water deficit regimes with 40%, 60%, 80% and 100%
field capacity (FC). Imposition of varying water
regimes significantly decreased shoot and root fresh and dry weights, shoot
plus root lengths, and chlorophyll b contents of spinach plants. Increase in proline, glycinebetaine (GB),
total phenolics, ascorbic acid and malondialdehyde (MDA)
contents as well as the activities of antioxidant enzymes including superoxide
dismutase, peroxidase and catalase were observed in the spinach plants
particularly at 40% FC. The most effective level of water
stress for elevating the proline, GB and antioxidant
levels/activities was observed at 40% FC followed by 60% FC.
Hence, the results of this study suggested that upregulation of antioxidants
and osmoprotectants is positively associated with the drought tolerance of
spinach which depends on the severity of water stress level. These results can
be used to narrow the gap between selection of plant species and requirement of
irrigated water for the crops grown on dry land areas.
Keywords: Antioxidants; osmoprotection; reactive oxygen species;
spinach; water stress
ABSTRAK
Adalah diketahui bahawa sayur-sayuran berdaun termasuk bayam (Spinacea oleracea L.) mengandungi jumlah air
yang agak tinggi, oleh itu, mereka memerlukan lebih air sepanjang kitaran hidup
berbanding sayur-sayuran lain. Di samping itu, terdapat hubungan antara
osmoperlindungan dan antioksidan berkaitan toleransi tekanan kemarau. Dengan
mengambil kira fakta tersebut, kajian ini dijalankan untuk menilai perubahan
dalam pertumbuhan tanaman, osmoperlindungan, pigmen klorofil serta
aktiviti/tahap sistem antioksidatif pada bayam (Spinacea oleracea L.)
yang ditanam di bawah rejim defisit air berbeza dengan 40%, 60%, 80% dan 100%
kapasiti lapangan (FC). Pengenaan rejim air yang berbeza
dengan ketara mengurangkan berat segar dan kering pucuk dan akar, panjang pucuk
dan akar serta kandungan klorofil b pada pokok bayam. Pertambahan
kandungan prolin, glisinbetain (GB), jumlah fenolik, asid
askorbik dan malondialdehid (MDA) serta aktiviti enzim
antioksida termasuk superoksida dismutase, peroksidase dan katalase telah
diperhatikan pada tanaman bayam terutamanya pada 40% FC.
Tahap tekanan air paling berkesan untuk meningkatkan tahap/aktiviti proline, GB dan
antioksidan diperhatikan pada 40% FC diikuti 60% FC.
Oleh itu, keputusan kajian ini mencadangkan pengawalaturan atas antioksidan dan
osmoperlindungan dikaitkan secara positif dengan toleransi kemarau oleh bayam
yang bergantung pada keterukan aras tekanan air. Keputusan ini boleh digunakan
untuk mengurangkan jurang antara pemilihan spesies tumbuhan dan keperluan
pengairan untuk tanaman yang ditanam di kawasan tanah kering.
Kata kunci: Antioksidan; bayam;
osmoperlindungan; spesies oksigen reaktif; tekanan air
RUJUKAN
Akram, N.A., Waseem, M., Ameen, R. & Ashraf, M.
2016. Trehalose pretreatment induces drought tolerance in radish (Raphanus
sativus L.) plants: Some key physio-biochemical traits. Acta Physiologia
Plantrum 38: 3.
Aranjuelo, I., Molero, G., Erice, G., Avice, J.C.
& Nogués, S. 2010. Plant physiology and proteomics reveals the leaf
response to drought in alfalfa (Medicago sativa L.). Journal of
Experimental Botany 62: 111-123.
Arnon, D.I. 1949. Copper enzymes in isolated
chloroplast, polyphenol oxidase in (Beta vulgaris L.). Journal of
Plant Physiology 24: 1-15.
Ashraf, M. 2010. Inducing drought tolerance in plants:
Some recent advances. Advances in Biotechnology 28: 169-183.
Ashraf, M. 2009. Biotechnological approach of
improving plant salt tolerance using antioxidants as markers. Biotechnology
Advances 27: 84-93.
Ashraf, M. & Harris, P.J.C. 2013. Photosynthesis
under stressful environments: An overview. Photosynthetica 51: 163-190.
Ashraf, M. & Foolad, M.R. 2007. Improving plant
abiotic-stress resistance by exogenous application of osmoprotectants glycine
betaine and proline. Environmental and Experimental Botany 59: 206-216.
Bates, L.S., Waldren, R.P. & Teare, I.D. 1973.
Rapid determination of free proline for water stress. Plant Soil 39:
205-207.
Cakmak, I. & Horst, J.H. 1991. Effects of aluminum
on lipid peroxidation, superoxide dismutase, catalase, and peroxidase
activities in root tips of soybean (Glycine max). Physiologia
Plantarum 83: 463-468.
Chance, M. & Maehly, A.C. 1955. Assay of catalases
and peroxidases. Methods in Enzymology 2: 764-817.
Cranston, L.M., Kenyon, P.R., Morris, S.T.,
Lopez-Villalobos, N. & Kemp, P.D. 2016. Morphological and physiological
responses of plantain (Plantago lanceolata) and chicory (Cichorium
intybus) to water stress and defoliation frequency. Journal of Agronomy
and Crop Sciences 202: 13-24.
Darvishan, M., Tohidi-Moghadam, H.R. & Zahedi, H.
2013. The effect of foliar application of ascorbic acid (vitamin C) on
physiological and biochemical changes of corn (Zea mays L.) under
irrigation withholding in different growth stages. Maydica 58: 195-200.
De Gara, L., De Pinto, M.C., Moliterni, V.M. &
D’egidio, M.G. 2003. Redox regulation and storage processes during maturation
in kernels of Triticum durum. Journal of Experimental Botany 54:
249-258.
Díaz-López, L., Gimeno, V., Simón, I., Martínez, V.,
Rodríguez- Ortega, W.M. & García-Sánchez, F. 2012. Jatropha curcas seedlings
show a water conservation strategy under drought conditions based on decreasing
leaf growth and stomatal conductance. Agricultural Water Management 105:
48-56.
Dolatabadian, A., Modarressanavy, S.A.M. & Asilan,
K.S. 2010. Effect of ascorbic acid foliar application on yield, yield component
and several morphological traits of grain corn under water deficit stress
conditions. Notulae Scientia Biologicae 2: 45-50.
Du, S.T., Liu, Y., Zhang, P., Liu, H.J., Zhang, X.Q.
& Zhang, R.R. 2015. Atmospheric application of trace amounts of nitric
oxide enhances tolerance to salt stress and improves nutritional quality in
spinach (Spinacia oleracea L.). Food Chemistry 173: 905-911.
Ejaz, B., Sajid, Z.A. & Aftab, F. 2012. Effect of
exogenous application of ascorbic acid on antioxidant enzyme activities,
proline contents, and growth parameters of Saccharum spp., hybrid cv.
HSF-240 under salt stress. Turkish Journal of Biology 36: 630-640.
Ekinci, M., Ors, S., Sahin, U., Yildirim, E. &
Dursun, A. 2015. Responses to the irrigation water amount of spinach
supplemented with organic amendment in greenhouse conditions. Journal of
Communications in Soil Sciences and Plant Analysis 46: 327-342.
Frary, A., Göl, D., Keles, D., Ökmen, B., Pinar, H.,
Sigva, H.Ö., Yemenicioglu, A. & Doganlar, S. 2010. Salt tolerance in Solanum
pennellii: Antioxidant response and related QTL. BMC Plant Biology 10:
58.
Galahitigama,
G.A.H. & Wathugala, D.L. 2016. Pre-sowing seed treatments improves the
growth and drought tolerance of rice (Oryza sativa L.). Imperial
Journal of Interdisciplinary Research 2(9): 1074-1077.
Giannopolitis,
C.N. & Ries, S.K. 1977. Superoxide dismutases I. Occurrence in higher
plants. Plant Physiology 59: 309-314.
Grieve,
C.M. & Grattan, S.R. 1983. Rapid assay for determination of water soluble
quaternary ammonium compounds. Plant Soil 70: 303-307.
Hameed,
A. & Iqbal, N. 2014. Chemo-priming with mannose, mannitol and H2O2 mitigate
drought stress in wheat. Cereal Research Communications 42: 450-462.
Hammad,
S.A.R. & Ali, O.A.M. 2014. Physiological and biochemical studies on drought
tolerance of wheat plants by application of amino acids and yeast extract. Annals
of Agricultural Sciences 59: 133-145.
Julkunen-Tiitto,
R. 1985. Phenolic constituents in the leaves of north willows: Methods for the
analysis of certain phenolics. Journal of Agricultural and Food Chemistry 33:
213-217.
Khaki-Moghadam,
A. & Rokhzadi, A. 2015. Growth and yield parameters of safflower (Carthamus
tinctorius) as influenced by foliar methanol application under well-watered
and water deficit conditions. Environmental
and Experimental Biology 13: 93-97.
Kosar,
F., Akram, N.A. & Ashraf, M. 2015. Exogenously applied 5-aminolevulinic
acid modulates some key physiological characteristics and antioxidative defense
system in spring wheat (Triticum aestivum L.) seedlings under water
stress. South African Journal of Botany 96: 71-77.
Kusaka,
M., Ohta, M. & Fujimura, T. 2005. Contribution of inorganic components to
osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiologia
Plantarum 125: 474-489.
Lamhamdi,
M., Bakrim, A., Bouayad, N., Aarab, A. & Lafont, R. 2013. Protective role
of a methanolic extract of spinach (Spinacia oleracea L.) against Pb
toxicity in wheat (Triticum aestivum L.) seedlings: Beneficial effects
for a plant of a nutraceutical used with animals. Environmental Science and
Pollution Research 20: 7377-7385.
Lehtimäki,
N., Lintala, M., Allahverdiyeva, Y., Aro, E.M. & Mulo, P. 2010. Drought
stress-induced upregulation of components involved in ferredoxin-dependent
cyclic electron transfer. Journal of
Plant Physiology 167: 1018-1022.
Leskovar,
D.I., Agehara, S., Yoo, K. & Pascual-Seva, N. 2012. Crop coefficient-based
deficit irrigation and planting density for onion: Growth, yield, and bulb
quality. Horticultural Science 47: 31-37.
Ma,
D., Sun, D., Wang, C., Li, Y. & Guo, T. 2014. Expression of flavonoid
biosynthesis genes and accumulation of flavonoid in wheat leaves in response to
drought stress. Plant Physiology and Biochemistry 80: 60-66.
Maevskaya,
S.N. & Nikolaeva, M.K. 2013. Response of antioxidant and osmoprotective
systems of wheat seedlings to drought and rehydration. Russian Journal of Plant Physiology 60: 343-350.
Mittova,
V., Volokita, M., Guy, M. & Tal, M. 2000. Activities of SOD and the
ascorbate- lutathione cycle enzymes in subcellular compartments in leaves and
roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon
pennellii. Physiologia Plantarum 110: 42-51.
Moussa,
H.R. & Abdel-Aziz, S.M. 2008. Comparative response of drought tolerant and
drought sensitive maize genotypes to water stress. Australian Journal of
Crop Science 1: 31-36.
Mukherjee,
S.P. & Choudhuri, M.A. 1983. Implications of water stress induced changes
in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum 58: 166-170.
Muscolo,
A., Junker, A., Klukas, C., Weigelt-Fischer, K., Riewe, D. & Altmann, T.
2015. Phenotypic and metabolic responses to drought and salinity of four
contrasting lentil accessions. Journal of Experimental Botany 66:
5467-5480.
Noreen,
S., Ashraf, M., Hussain, M. & Jamil, A. 2009. Exogenous application of
salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus
annuus L.) plants. Pakistan Journal
of Botany 41: 473-479.
Nounjan,
N., Nghia, P.T. & Theerakulpisut, P. 2012. Exogenous proline and trehalose
promote recovery of rice seedlings from salt-stress and differentially modulate
antioxidant enzymes and expression of related genes. Journal of Plant
Physiology 169: 596-604.
Patel,
P.K. & Aranjan, A.H. 2013. Differential sensitivity of chickpea genotype to
salicylic acid and drought stress during pre-anthesis: Effects on total
chlorophyll, phenolics, seed protein, and protein profiling. An
International Quarterly Journal of Biology & Life Sciences 8: 569-574.
Raza,
M.A.S., Saleem, M.F., Khan, I.H., Shah, G.M. & Raza, A. 2016. Bio-economics
of foliar applied GB and k on drought stressed wheat (Triticum aestivum L.). ARPN Journal of Agricultural and Biological Sciences 11: 1.
Raza,
M.A.S., Saleem, M.F., Shah, G.M., Khan, I.H. & Raza, A. 2014. Exogenous
application of glycinebetaine and potassium for improving water relations and
grain yield of wheat under drought. Journal of Soil Sciences and Plant
Nutrition 14: 348-364.
Razzaq,
A., Ali, Q., Qayyum, A., Mahmood, I., Ahmad, M. & Rasheed, M. 2013.
Physiological responses and drought resistance and drought resistance index of
nine wheat (Triticum aestivum L.) cultivars under different moisture
conditions. Pakistan Journal of Botany 45: 151-155.
Shafiq,
S., Akram, N.A. & Ashraf, M. 2015. Does exogenously-applied trehalose alter
oxidative defense system in the edible part of radish (Raphanus sativus L.)
under water-deficit conditions? Scientia Horticulturae 185: 68-75.
Shafiq,
S., Akram, N.A., Ashraf, M. & Arshad, A. 2014. Synergistic effects of
drought and ascorbic acid on growth, mineral nutrients and oxidative defense
system in canola (Brassica napus L.) plants. Acta Physiologia
Plantarum 36: 539-1553.
Simon-Grao,
S., Garcia-Sanchez, F., Alfosea-Simon, M., Simon, I., Lidon, V. & Ortega,
W.M.R. 2016. Study on the foliar application of fitomare® on drought tolerance
of tomato plants. International Journal of Plant Animal & Environmental
Sciences 6: 15-21.
Srivastava,
N. & Kumar, G. 2014. Influence of drought stress on cytological behavior of
green manure crop Sesbania cannabina Poir. Cytologia 79: 325-329.
Terzi,
R. & Kadioglu, A. 2006. Drought stress tolerance and antioxidant enzyme
system in Ctenanthe setosa. Acta Biologica Cracoviensia Series
Botanica 48: 89-96.
Velikova,
V., Yordanov, I. & Edreva, A. 2000. Oxidative stress and some antioxidant
systems in acid rain-treated bean plants: Protective roles of exogenous
polyamines. Plant Sciences 151: 59-66.
Xu,
C. & Leskovar, D.I. 2015. Effects of A. nodosum seaweed extracts on
spinach growth, physiology and nutrition value under drought stress. Scientia
Horticultuae 183: 39-47.
Yadegari,
L.Z., Heidari, R., Rahmani, F. & Khara, J. 2014. Drought tolerance induced
by foliar application of abscisic acid and sulfonamide compounds in tomato. Journal
of Stress Physiology and Biochemistry 10: 326-334.
Yasmeen,
A., Basra, S.M.A., Wahid, A., Farooq, M., Nouman, W., Rehman, H.U. &
Hussain, N. 2013. Improving drought resistance in wheat (Triticum aestivum)
by exogenous application of growth enhancers. International Journal of
Agriculture & Biology 15: 1307-1312.
*Pengarang
untuk surat-menyurat; email: nudrataauaf@yahoo.com
|