Sains Malaysiana 48(3)(2019): 543–553
http://dx.doi.org/10.17576/jsm-2019-4803-06
Fenazin
sebagai Potensi Antibiotik Baru daripada Streptomyces kebangsaanensis
(Fenazin
as Potential New Antibiotics from Streptomyces kebangsaanensis)
JUWAIRIAH REMALI1, NORAZIAH MOHAMAD ZIN2*, CHYAN LEONG NG3, WAN M. AIZAT3 & JOHN J.L TIONG4
1Pusat Pengajian
Biosains dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penuaan Sihat dan
Kesejahteraan (HCARE), Universiti Kebangsaan
Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal
Territory, Malaysia
3Institut Biologi Sistem
(INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
4Pusat Pengajian Farmasi,
Universiti Taylor, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor
Darul Ehsan, Malaysia
Diserahkan:
31 Mac 2018/Diterima: 15 November 2018
ABSTRAK
Fenazin merupakan metabolit sekunder yang biasanya disintesis secara
semula jadi oleh Pseudomonas
dan Streptomyces. Ia merupakan sebatian heterosiklik yang
mempunyai sebatian bernitrogen pada struktur teras cecincin. Kajian
mengenai antibiotik ini telah bermula seawal abad ke-19 lagi dan
ternyata menjadi calon dadah yang berpotensi tinggi dalam dunia
perubatan. Sehingga kini, lebih daripada 100 jenis fenazin telah
diterokai daripada sumber semula jadi dan boleh bertindak sebagai
antibakteria, antikanser, antivirus, antitumor serta antiparasit.
Setakat ini, kajian biosintesis fenazin yang telah dijalankan terhadap
Pseudomonas dan Streptomyces telah mendedahkan gen
yang bertanggungjawab dalam tapak jalan biosintesis fenazin, namun
begitu, gen khusus yang terlibat dalam penghasilan terbitan fenazin
yang kompleks masih dalam hipotesis. Dalam ulasan ini, kami membincangkan
kepentingan fenazin serta pemahaman terkini tentang tapak jalan
biosintesis fenazin yang berjaya diterokai di dalam Streptomyces
kebangsaanensis.
Kata kunci: Antibiotik; biosintesis; fenazin; Streptomyces kebangsaanensis
ABSTRACT
Phenazine is a secondary metabolite that is naturally synthesized
by Pseudomonas and Streptomyces.
It is a heterocyclic compound that has nitrogen group at the core
structure of the ring. The study of antibiotics has begun since
19th century and turned out to be a highly potential drug in a medical
world. To date, more than 100 types of phenazines have been discovered
from natural sources and acted as antibacterial, anticancer, antiviral,
antitumor and antiparasites. To date, the study of phenazine biosynthesis
was carried out on Pseudomonas and Streptomyces has
showed the genes responsible in the pathway of phenazine biosynthesis
but the specific genes involved in the production of complex phenazine
derivatives are still hypothetical. In this review, we discuss the
importance of phenazine as well as the latest understanding of phenazine
biosynthesis pathways that have been successful discovered in Streptomyces
kebangsaanensis.
Keywords: Antibiotics; biosynthesis; phenazine; Streptomyces kebangsaanensis
RUJUKAN
Abdelfattah, M.S., Ishikawa, N., Karmakar, U.K.,
Yamaku, K. & Ishibashi, M. 2016. New phenazine analogues from Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming activities. Journal of
Antibiotics 69(6): 446-450.
Abdelfattah, M.S., Toume, K. & Ishibashi, M.
2011. Isolation and structure elucidation of izuminosides A-C: A rare phenazine
glycosides from Streptomyces sp. IFM 11260. Journal of Antibiotics 64(3):
271-275.
Abken, H.J., Tietze, M., Brodersen, J., Bäumer,
S., Beifuss, U. & Deppenmeier, U. 1998. Isolation and characterization of
methanophenazine and function of phenazines in membrane-bound electron
transport of Methanosarcina mazei Gö1. Journal of Bacteriology 180(8):
2027-2032.
Arbiser, J.L. & Moschella, S.L. 1995.
Clofazimine: A review of its medical uses and mechanisms of action. Journal
of the American Academy of Dermatology 32(2): 241-247.
Asano, K., Takahashi, K., Tomita, F. &
Kawamoto, I. 1986. DC- 86-M, a novel antitumor antibiotic. I. Taxonomy of
producing organism and fermentation. The Journal of Antibiotics 39(5):
619-623.
Blankenfeldt W. 2013. The biosynthesis of
phenazines. Dlm. Microbial Phenazines, disunting oleh Chincholkar, S.
& Thomashow, L. Springer, Berlin, Heidelberg. hlm. 1-17.
Blankenfeldt, W., Kuzin, A.P., Skarina, T., Korniyenko, Y., Tong,
L., Bayer, P., Janning, P., Thomashow, L.S. & Mavrodi, D.V. 2004. Structure
and function of the phenazine biosynthetic protein PhzF from Pseudomonas
fluorescens. Proceedings of the National Academy of Sciences of the
United States of America 101(47): 16431-16436.
Brisbane, P.G., Janik, L.J., Tate, M. &
Warren, R. 1987. Revised structure for the phenazine antibiotic from Pseudomonas
fluorescens 2-79 (NRRL B-15132). Antimicrobial Agents and Chemotherapy 31(12):
1967-1971.
Cha, J.W., Lee, S.Il, Kim, M.C., Thida, M., Lee,
J.W., Park, J.S. & Kwon, H.C. 2015. Pontemazines A and B, phenazine
derivatives containing a methylamine linkage from Streptomyces sp.
UT1123 and their protective effect to HT-22 neuronal cells. Bioorganic and
Medicinal Chemistry Letters 25(22): 5083-5086.
Delaney, S.M., Mavrodi, D.V., Bonsall, R.F.
& Thomashow, L.S. 2001. phzO, a gen for biosynthesis of 2-hydroxylated
phenazine compounds in Pseudomonas aureofaciens 30-84. Journal of
Bacteriology 183(1): 318-327.
Dietrich, L.E., Price-Whelan, A., Petersen, A.,
Whiteley, M. & Newman, D.K. 2006. The phenazine pyocyanin is a terminal
signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Molecular Microbiology 61(5): 1308-1321.
Ding, Z.G., Li, M.G., Ren, J., Zhao, J.Y.,
Huang, R., Wang, Q.Z., Cui, X.L., Zhu, H.J. & Wen, M.L. 2011. Phenazinolins
A-E: Novel diphenazines from a tin mine tailings-derived Streptomyces species. Organic & Biomolecular Chemistry 9(8): 2771-2776.
Emerson, J., Rosenfeld, M., McNamara, S.,
Ramsey, B. & Gibson, R.L. 2002. Pseudomonas aeruginosa and other
predictors of mortality and morbidity in young children with cystic fibrosis. Pediatric
Pulmonology 34(2): 91-100.
Fitzpatrick, D.A. 2009. Lines of evidence for
horizontal gene transfer of a phenazine producing operon into multiple
bacterial species. Journal of Molecular Evolution 68(2): 171-185.
Fordos, M. 1860. Recherches sur la matière colorante
des suppurations bleues: Pyocyanine. CR Acad. Sci. 51: 215-217.
Gebhardt, K., Schimana, J., Krastel, P.,
Dettner, K., Rheinheimer, J., Zeeck, A. & Fiedler, H.P. 2002.
Endophenazines AD, new phenazine antibiotics from the arthropod associated endosymbiont Streptomyces anulatus. I. Taxonomy, fermentation, isolation and
biological activities. The Journal of Antibiotics 55(9): 794-800.
Geiger, A., Keller-Schierlein, W., Brandl, M.
& Zähner, H. 1988. Metabolites of microorganisms. 247. Phenazines from Streptomyces
antibioticus, strain Tu 2706. The Journal of Antibiotics 41(11):
1542-1551.
Gessard, C. 1882. Sur les colorations bleue et
verte des linges a pansements. Compt. Rend. Acad. Sci. 94: 536-568.
Giddens, S.R., Houliston, G.J. & Mahanty,
H.K. 2003. The influence of antibiotic production and pre-emptive colonization
on the population dynamics of Pantoea agglomerans (Erwinia herbicola)
Eh1087 and Erwinia amylovora in planta. Environmental Microbiology 5(10):
1016-1021.
Giddens, S.R., Feng, Y. & Mahanty, H.K.
2002. Characterization of a novel phenazine antibiotic gen cluster in Erwinia
herbicola Eh1087. Molecular Microbiology 45(3): 769-783.
Guttenberger, N., Blankenfeldt, W. &
Breinbauer, R. 2017. Recent developments in the isolation, biological function,
biosynthesis, and synthesis of phenazine natural products. Bioorganic and
Medicinal Chemistry 25(22): 6149-6166.
Hassan, H.M. & Fridovich, I. 1980. Mechanism
of the antibiotic action pyocyanine. Journal of Bacteriology 141(1):
156-163.
Hernandez, M.E., Kappler, A. & Newman, D.K.
2004. Phenazines and other redox-active antibiotics promote microbial mineral
reduction. Applied and Environmental Microbiology 70(2): 921-928.
Hollstein, U. & Van Gemert Jr., R.J. 1971.
Interaction of phenazines with polydeoxyribonucleotides. Biochemistry 10(3):
497-504.
Hollstein, U., Mock, D.L., Sibbitt, R.R.,
Roisch, U. & Lingens, F. 1978. Incorporation of shikimic acid into iodinin. Tetrahedron Letters 19(33): 2987-2990.
Jayatilake, G.S., Thornton, M.P., Leonard, A.C.,
Grimwade, J.E. & Baker, B.J. 1996. Metabolites from an Antarctic
sponge-associated bacterium, Pseudomonas aeruginosa. Journal of
Natural Products 59(3): 293-296.
Johnson, L.E. & Dietz, A. 1969. Lomofungin,
a new antibiotic produced by Streptomyces lomondensis sp. n. Applied
Microbiology 17(5): 755-759.
Kearns, L. & Hale, C. 1996. Partial
characterization of an inhibitory strain of Erwinia herbicola with
potential as a biocontrol agent for Erwinia amylovora, the fire blight
pathogen. Journal of Applied Bacteriology 81(4): 369-374.
Kennedy, R.K., Naik, P.R., Veena, V., Lakshmi,
B.S., Lakshmi, P., Krishna, R. & Sakthivel, N. 2015. 5-Methyl phenazine-
1-carboxylic acid: A novel bioactive metabolite by a rhizosphere soil bacterium
that exhibits potent antimicrobial and anticancer activities. Chemico-Biological
Interactions 231: 71-82.
Kerr, J. 2000. Phenazine pigments; Antibiotics
and virulence factors. Infectious Disease Review 2(4): 184-194.
Kim, W.G., Ryoo, I.J., Yun, B.S., Shin-Ya, K.,
Seto, H. & Yoo, I.D. 1997. New diphenazines with neuronal cell protecting
activity, phenazostatins A and B, produced by Streptomyces sp. The
Journal of Antibiotics 50(9): 715-721.
Kitahara, M. 1982. Saphenamycin, a novel
antibiotic from a strain of Streptomyces. Journal of Antibiotics 35(10):
1412-1414.
Krastel, P., Zeeck, A., Gebhardt, K., Fiedler,
H.P. & Rheinheimer, J. 2002. Endophenazines AD, new phenazine antibiotics
from the athropod associated endosymbiont Streptomyces anulatus II.
Structure elucidation. The Journal of Antibiotics 55(9): 801-806.
Kondratyuk, T.P., Park, E.J., Yu, R., van
Breemen, R.B., Asolkar, R.N., Murphy, B.T., Fenical, W. & Pezzuto, J.M.
2012. Novel marine phenazines as potential cancer chemopreventive and
anti-inflammatory agents. Marine Drugs 10(12): 451-464.
Lau, G.W., Hassett, D.J., Ran, H. & Kong, F.
2004a. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends
in Molecular Medicine 10(12): 599-606.
Lau, G.W., Ran, H., Kong, F., Hassett, D.J.
& Mavrodi, D. 2004b. Pseudomonas aeruginosa pyocyanin is critical
for lung infection in mice. Infection and Immunity 72(7): 4275-4278.
Laursen, J.B. & Nielsen, J. 2004. Phenazine
natural products: Biosynthesis, synthetic analogues, and biological activity. Chemical
Reviews 104(3): 1663-1686.
Ledderhose, G. 1888. Ueber den blauen Eiter. Langenbecks
Arch Klin Chir Ver Dtsch Z Chir 28: 201-230.
Levitch, M.E. & Rietz, P. 1966. The
isolation and characterization of 2-hydroxyphenazine from Pseudomonas
aureofaciens. Biochemistry 5(2): 689-692.
Levitch, M. & Stadtman, E. 1964. A study of
the biosynthesis of phenazine-1-carboxylic acid. Archives of Biochemistry
and Biophysics 106: 194-199.
Mavrodi, D.V., Parejko, J.A., Mavrodi, O.V., Kwak, Y.S., Weller,
D.M., Blankenfeldt, W. & Thomashow, L.S. 2013. Recent insights into the
diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environmental Microbiology 15(3): 675-686.
Mavrodi, D.V., Peever, T.L., Mavrodi, O.V.,
Parejko, J.A., Raaijmakers, J.M., Lemanceau, P., Mazurier, S., Heide, L.,
Blankenfeldt, W. & Weller, D.M. 2010. Diversity and evolution of the
phenazine biosynthesis pathway. Applied and Environmental Microbiology 76(3):
866-879.
Mavrodi, D.V., Blankenfeldt, W. & Thomashow,
L.S. 2006. Phenazine compounds in fluorescent Pseudomonas sp.
biosynthesis and regulation. Annual Review Phytopathology 44: 417-445.
Mavrodi, D.V., Bonsall, R.F., Delaney, S.M.,
Soule, M.J., Phillips, G. & Thomashow, L.S. 2001. Functional analysis of
gens for biosynthesis of pyocyanin and phenazine-1- carboxamide from Pseudomonas
aeruginosa PAO1. Journal of Bacteriology 183(21): 6454-6465.
McDonald, M., Mavrodi, D.V., Thomashow, L.S.
& Floss, H.G. 2001. Phenazine biosynthesis in Pseudomonas fluorescens:
Branchpoint from the primary shikimate biosynthetic pathway and role of
phenazine-1, 6-dicarboxylic acid. Journal of the American Chemical Society 123(38):
9459-9460.
Mentel, M., Ahuja, E.G., Mavrodi, D.V.,
Breinbauer, R., Thomashow, L.S. & Blankenfeldt, W. 2009. Of two make one:
The biosynthesis of phenazines. Chembiochem. 10(14): 2295-2304.
Parsons, J.F., Song, F., Parsons, L., Calabrese,
K., Eisenstein, E. & Ladner, J.E. 2004a. Structure and function of the
phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79. Biochemistry 43(39): 12427-12435.
Parsons, J.F., Calabrese, K., Eisenstein, E.
& Ladner, J.E. 2004b. Structure of the phenazine biosynthesis enzyme PhzG. Acta
Crystallographica Section D: Biological Crystallography 60(11): 2110-2113.
Pierson III, L.S. & Pierson, E.A. 2010.
Metabolism and function of phenazines in bacteria: Impacts on the behavior of
bacteria in the environment and biotechnological processes. Applied
Microbiology and Biotechnology 86(6): 1659-1670.
Pierson, L.S., Gaffney, T., Lam, S. & Gong,
F. 1995. Molecular analysis of gens encoding phenazine biosynthesis in the
biological control bacterium Pseudomonas aureofaciens 30- 84. FEMS
Microbiology Letters 134(2-3): 299-307.
Podojil, M. & Gerber, N.N. 1967. The
biosynthesis of 1, 6-phenazinediol 5, 10-dioxide (Iodinin) by Brevibacterium
iodinum. Biochemistry 6(9): 2701-2705.
Recinos, D.A., Sekedat, M.D., Hernandez, A.,
Cohen, T.S., Sakhtah, H., Prince, A.S., Price-Whelan, A. & Dietrich, L.E.
2012. Redundant phenazine operons in Pseudomonas aeruginosa exhibit
environment-dependent expression and differential roles in pathogenicity. Proceedings
of the National Academy of Sciences 109(47): 19420-19425.
Reddy, V.M., O’Sullivan, J.F. & Gangadharam,
P.R. 1999. Antimycobacterial activities of riminophenazines. Journal of
Antimicrobial Chemotherapy 43(5): 615-623.
Remali, J., Sarmin, N.I.M., Ng, C.L., Tiong,
J.J.L., Aizat, W.M., Keong, L.K. & Zin, N.M. 2017b. Genomic
characterization of a new endophytic Streptomyces kebangsaanensis identifies
biosynthetic pathway gene clusters for novel phenazine antibiotic production. Peer
J. 5: e3738.
Römer, A. & Herbert, R. 1982. Further
observations on the source of nitrogen in phenazine biosynthesis. Z.
Naturforsch., Ser. C. 37(11): 1070-1074.
Sarmin, N.I.M., Tan, G.Y.A., Franco, C.M., Edrada-Ebel,
R., Latip, J. & Zin, N.M. 2013. Streptomyces kebangsaanensis
sp. nov.,
an endophytic actinomycete isolated from an ethnomedicinal plant,
which produces phenazine-1- carboxylic acid. International Journal
of Systematic and Evolutionary Microbiology 63(Pt 10): 3733-3738.
Schoental, R. 1941. The nature of the
antibacterial agents present in Pseudomonas pyocyanea cultures. British
Journal of Experimental Pathology 22(3): 137-147.
Schroeter, J. 1872. Ueber einige durch Bacterien
gebildete Pigmente. Beiträge zur Biologie der Pflanzen 1: 109-126.
Selengut, J.D. & Haft, D.H. 2010. Unexpected
abundance of coenzyme F420-dependent enzymes in Mycobacterium tuberculosis and
other actinobacteria. Journal of Bacteriology 192(21): 5788-5798.
Smirnov, V.V. & Kiprianova, E.A. 1990.
Bacteria of Pseudomonas genus. Kiev, Ukraine: Naukova Dumka. hlm.
100-111.
Spicer, J.A., Gamage, S.A., Rewcastle, G.W.,
Finlay, G.J., Bridewell, D.J., Baguley, B.C. & Denny, W.A. 2000. Bis
(phenazine-1-carboxamides): Structure-activity relationships for a new class of
dual topoisomerase I/II-directed anticancer drugs. Journal of Medicinal
Chemistry 43(7): 1350-1358.
Stewart, A.J., Mistry, P., Dangerfield, W.,
Bootle, D., Baker, M., Kofler, B., Okiji, S., Baguley, B.C., Denny, W.A. &
Charlton, P.A. 2001. Antitumor activity of XR5944, a novel and potent
topoisomerase poison. Anti-cancer Drugs 12(4): 359-367.
Cholo, C.M., Steel, H.C., Fourie, P.B.,
Germishuizen, W.A., Anderson, R. 2011. Clofazimine: Current status and future
prospects. Journal of Antimicrobial Chemotherapy 67(2): 290-298.
Takahashi, I., Takahashi, K.I., Ichimura, M.,
Morimoto, M., Asano, K., Kawamoto, I., Tomita, F. & Nakano, H. 1988.
Duocarmycin A, a new antitumor antibiotic from Streptomyces. The
Journal of Antibiotics 41(12): 1915-1917.
Thomashow, L.S. & Weller, D.M. 1988. Role of
a phenazine antibiotic from Pseudomonas fluorescens in biological
control of Gaeumannomyces graminis var. tritici. Journal of Bacteriology 170(8): 3499-3508.
Thomashow, L.S., Weller, D.M., Bonsall, R.F.
& Pierson, L.S. 1990. Production of the antibiotic phenazine-1-carboxylic
acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Applied
and Environmental Microbiology 56(4): 908-912.
Turner, J.M. & Messenger, A.J. 1986.
Occurrence, biochemistry and physiology of phenazine pigment production. Advances
in Microbial Physiology 27: 211-275.
Van’t Land, C.W., Mocek, U. & Floss, H.G.
1993. Biosynthesis of the phenazine antibiotiks, the saphenamycins and
esmeraldins, in Streptomyces antibioticus. The Journal of Organic
Chemistry 58(24): 6576-6582.
Wang, Y., Luo, Q., Zhang, X. & Wang, W.
2011. Isolation and purification of a modified phenazine, griseoluteic acid,
produced by Streptomyces griseoluteus P510. Research in Microbiology 162(3):
311-319.
Woeng, C.A.T.F., Bloemberg, G.V., van der Bij,
A.J., van der Drift, K.M., Schripsema, J., Kroon, B., Scheffer, R.J., Keel, C.,
Bakker, P.A. & Tichy, H.V. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium
oxysporum f. sp. radicis-lycopersici. Molecular Plant- Microbe
Interactions 11(11): 1069-1077.
Wu, C., Van Wezel, G.P. & Hae Choi, Y. 2015.
Identification of novel endophenaside antibiotics produced by Kitasatospora sp.
MBT66. Journal of Antibiotics 68(7): 445-452.
Yun, B.S., Ryoo, I.J., Kim, W.G., Kim, J.P., Koshino, H., Scto, H.
& Yoo, I.D. 1996. Structures of phenazostatins A and B, neuronal cell protecting
substances of microbial origin. Tetrahedron Letters 37(47): 8529-8530.
*Pengarang
untuk surat-menyurat; email: noraziah.zin@ukm.edu.my
|