Sains Malaysiana 48(3)(2019): 561–570
http://dx.doi.org/10.17576/jsm-2019-4803-08
The
Effects of Plant Secondary Metabolites from Coniferous Needle Leaf Litter on
the Leaf Litter Decomposition of Betula albo-sinensis Burk
(Kesan Metabolit
Tumbuhan Sekunder daripada Sampah Daun bak Jarum Konifer pada
Penguraian Sampah Dedaun Betula albo-sinensis Burk)
XIAOXI ZHANG1,2, HUI LIU1, WENXING ZHOU1, JIAJIA LI1, HANGYU LEI1, YONGKANG JI1, BOYA WANG3 & ZENGWEN LIU3*
1Shaanxi Engineering
and Technological Research Center for Conservation and Utilization of Regional,
Biological Resources, College of Life Sciences, Yan’an University, Yan’an,
Shaanxi, 716000, China
2Institute of Soil and
Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
3College of Natural
Resources and Environment, Northwest A&F University, Yangling, Shaanxi,
712100, China
Diserahkan:
28 Julai 2018/Diterima: 4 Januari 2019
ABSTRACT
In this study, leaf litters of Betula albo-sinensis and 5 coniferous species were used as
samples. The B. albo-sinensis leaf litter was buried in soil and termly
treated with the water extracts of five types of coniferous leaf litter for a
6-month simulation decomposition experiment. The dynamics of mass loss and
nutrients (C, N, P, and K) content of leaf litter and the soil enzymatic
activities were measured to investigate the effects of plant secondary
metabolites (PSM) from coniferous leaf litters on the decomposition
processes of B. albo-sinensis leaf litter. The results indicated that
the extracts of Pinus tabuliformis, Platycladus orientalis, P. armandii and Larix principis-rupprechtii leaf litters significantly inhibited the
whole decomposition process and overall nutrients release of B.
albo-sinensis leaf litter, while the extracts of Picea asperata leaf
litter exhibited no significant influence. The general suppression of PSM on
the soil sucrase, carboxymethyl cellulase and β-glucosidase activities
might be the main reason leading to the inhibitory effects of the extracts of P.
tabuliformis, P. orientalis, P. armandii and L. principis-rupprechtii leaf
litter. The species causing inhibitory effects, especially L.
principis-rupprechtii, was not recommended to be planted mixed with B.
albo-sinensis, or their planting density should be lower in the mixed
forests.
Keywords: Leaf litter decomposition; nutrient release; secondary
metabolites; soil enzymatic activities
ABSTRAK
Dalam kajian ini, sampah dedaun bagi Betula albo-sinensis dan lima spesies konifer
telah digunakan sebagai sampel. Sampah dedaun B. albo-sinensis telah
ditanam di dalam tanah dan dirawat dengan ekstrak air daripada lima jenis
sampah dedaun konifer untuk uji kaji penguraian simulasi selama 6 bulan.
Dinamik kehilangan jisim dan kandungan nutrien (C, N, P dan K) sampah dedaun
dan aktiviti enzim tanah diukur untuk mengkaji kesan metabolit sekunder
tumbuhan (PSM) daripada sampah dedaun konifer dalam proses
penguraian sampah dedaun B. albo-sinensis. Hasilnya menunjukkan bahawa
ekstrak sampah dedaun Pinus tabuliformis, Platycladus orientalis, P.
armandii dan Larix principis-rupprechtii menghalang proses penguraian
keseluruhan dan penyebaran nutrien keseluruhan B. albo-sinensis secara
signifikan, manakala ekstrak sampah dedaun Picea asperata tidak
menunjukkan kesan yang signifikan. Penekanan umum PSM ke
atas aktiviti sukrase, karboksimetil selulase dan aktiviti β-glucosidase
tanah mungkin menjadi sebab utama yang membawa kepada kesan perencatan ekstrak
sampah dedaun P. tabuliformis, P. orientalis, P. armandii dan L.
principis-rupprechtii. Spesies yang menyebabkan kesan perencatan,
terutamanya L. principis-rupprechtii adalah tidak disarankan untuk
ditanam bercampur dengan B. albo-sinensis atau ketumpatan penanamannya
harus lebih rendah di dalam hutan bercampur.
Kata kunci: Aktiviti enzimatik tanah; metabolit
sekunder; pelepasan nutrien; penguraian sampah dedaun
RUJUKAN
Adamczyk, B., Karonen, M., Adamczyk, S.,
Engström, M.T., Laakso, T., Saranpää, P., Kitunen, V., Smolander, A. &
Simon, J. 2017. Tannins can slow-down but also speed-up soil enzymatic activity
in boreal forest. Soil Biology and Biochemistry 89: 60-67.
Adamczyk, S., Adamczyk, B., Kitunen, V. &
Smolander, A. 2015. Monoterpenes and higher terpenes may inhibit enzyme activities
in boreal forest soil. Soil Biology and Biochemistry 87: 59-66.
Adamczyk, S., Kiikkilä, O., Kitunen, V. &
Smolander, A. 2013. Potential response of soil processes to diterpenes,
triterpenes and tannins: Nitrification, growth of microorganisms and
precipitation of proteins. Applied Soil Ecology 67: 47-52.
Aderiye, B.I., Ogundana, S.K., Adesanya, S.A.
& Roberts, M.F. 1989. The effect of β-sitosterol on spore germination
and germ-tube elongation of Aspergillus niger and Botryodiplodia
theobromae. International Journal of Food Microbiology 8(1): 73-78.
Asensio, D., Yuste, J.C., Mattana, S., Ribas,
À., Llusià, J. & Peñuelas, J. 2012. Leaf litter VOCs induce changes in soil
microbial biomass C and N and largely increase soil CO2 efflux. Plant and Soil 360(1-2): 163-174.
Cañas, A.I., Alcalde, M., Plou, F., Martínez, M.J., Martínez, Á.T.
& Camarero, S. 2007. Transformation of polycyclic aromatic hydrocarbons by
laccase is strongly enhanced by phenolic compounds present in soil. Environmental
Science & Technology 41(8): 2964-2971.
Chapman, S.K., Newman,
G.S., Hart, S.C., Schweitzer, J.A. & Koch, G.W. 2013. Leaf litter mixtures
alter microbial community development: Mechanisms for non-additive effects in
leaf litter decomposition. PloS ONE 8(4): e62671.
Chen, W., Vermaak, I. & Viljoen, A. 2013. Camphor-a
fumigant during the black death and a coveted fragrant wood in ancient Egypt
and Babylon-a review. Molecules (Basel, Switzerland) 18(5): 5434-5454.
Chomel, M., Guittonny-Larchevêque, M., Fernandez, C., Gallet,
C., DesRochers, A., Paré, D., Jackson, B.G. & Baldy, V. 2016. Plant
secondary metabolites: A key driver of litter decomposition and soil nutrient
cycling. Journal of Ecology 104(6): 1527-1541.
Coq, S., Souquet, J.M., Meudec, E., Cheynier, V. & Hättenschwiler,
S. 2010. Interspecific variation in litter tannins drives decomposition in a
tropical rain forest of French Guiana. Ecology 91(7): 2080-2091.
Cox, S., Mann, C., Markham, J., Bell, H., Gustafson, J.,
Warmington, J. & Wyllie, S. 2000. The mode of antimicrobial action of the
essential oil of Melaleuca alternifolia (tea tree oil). Journal of
Applied Microbiology 88(1): 170-175.
De Marco, A., Meola, A., Maisto, G., Giordano, M. & De
Santo, A.V. 2011. Non-additive effects of leaf litter mixtures on decomposition
of leaf litters in a Mediterranean maquis. Plant and Soil 344(1-2):
305-317.
Duan, J., Wang, S., Zhang, Z., Xu, G., Luo, C., Chang, X.,
Zhu, X., Cui, S., Zhao, X. & Wang, W. 2013. Non-additive effect of species
diversity and temperature sensitivity of mixed litter decomposition in the
alpine meadow on Tibetan Plateau. Soil Biology and Biochemistry 57:
841-847.
Enguita, F.J. & Leitão, A.L. 2013. Hydroquinone:
Environmental pollution, toxicity, and microbial answers. BioMed Research
International 2013: e542168.
Gartner, T.B. & Cardon, Z.G. 2004. Decomposition
dynamics in mixed-species leaf litter. Oikos 104(2): 230-246.
Ghasemi-Aghbash, F., Hosseini, V. & Poureza, M. 2015. Nutrient
dynamics and early decomposition rates of Picea abies needles in
combination with Fagus orientalis leaf litter in an exogenous ecosystem. Annals of Forest Research 59(1): 21-32.
Hättenschwiler, S. & Jørgensen, H.B. 2010. Carbon
quality rather than stoichiometry controls litter decomposition in a tropical
rain forest. Journal of Ecology 98(4): 754-763.
Hättenschwiler, S., Tiunov, A.V. & Scheu, S. 2005.
Biodiversity and litter decomposition in terrestrial ecosystems. Annual
Review of Ecology, Evolution, and Systematics 36: 191-218.
Iqbal, J., Siegrist, J.A., Nelson, J.A. & McCulley, R.L.
2012. Fungal endophyte infection increases carbon sequestration potential of
southeastern USA tall fescue stands. Soil Biology and Biochemistry 44(1):
81-92.
Joanisse, G., Bradley, R., Preston, C. & Munson, A.
2007. Soil enzyme inhibition by condensed litter tannins may drive ecosystem
structure and processes: The case of Kalmia angustifolia. New
Phytologist 175(3): 535-546.
Li, Q. & Liu, Z. 2013. Effects of decomposed leaf litter
mixtures from Platycladus orientalis and broadleaf tree species on soil
properties. Scandinavian Journal of Forest Research 28(7): 642-650.
Li, Q., Liu, P., Tang, Z., Zhao, H., Wang, J., Song, X.,
Yang, L. & Wan, S. 2016a. Effects of two phenolic acids on root zone soil
nutrients, soil enzyme activities and pod yield of peanut. Chinese Journal
of Applied Ecology 27(4): 1189-1195.
Li, Q., Zhao, G., Cao, G. & Liu, Z. 2016b. Soil effects
of six different two-species litter mixtures that include Ulmus pumila. Chemistry
and Ecology 32(8): 707-721.
Li, Y., Ying, Y.X., Zhao, D.Y. & Ding, W.L. 2014.
Influence of allelochemicals on microbial community in ginseng cultivating
soil. Chinese Herbal Medicines 6(4): 313-318.
Liu, P., Huang, J., Sun, O.J. & Han, X. 2010. Litter
decomposition and nutrient release as affected by soil nitrogen availability
and litter quality in a semiarid grassland ecosystem. Oecologia 162(3):
771-780.
Liu, P., Liu, Z., Wang, C., Guo, F., Wang, M., Zhang, Y.,
Dong, L. & Wan, S. 2012. Effects of three long-chain fatty acids present in
peanut (Arachis hypogaea L.) root exudates on its own growth and the
soil enzymes activities. Allelopathy Journal 29(1): 13-24.
Madritch, M., Donaldson, J.R. & Lindroth, R.L. 2006.
Genetic identity of Populus tremuloides litter influences decomposition
and nutrient release in a mixed forest stand. Ecosystems 9(4): 528-537.
Mao, B., Yu, Z.Y. & Zeng, D.H. 2015. Non-additive
effects of species mixing on litter mass loss and chemical properties in a
Mongolian pine plantation of Northeast China. Plant and Soil 396(1-2):
339-351.
Mierziak, J., Kostyn, K. & Kulma, A. 2014. Flavonoids as
important molecules of plant interactions with the environment. Molecules
(Basel, Switzerland) 19(10): 16240- 16265.
Naseby, D., Pascual, J. & Lynch, J. 2000. Effect of
biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations,
soil microbial communities and soil enzyme activities. Journal of Applied
Microbiology 88(1): 161-169.
Ormeno, E., Baldy, V., Ballini, C., Larchevêque, M.,
Périssol, C. & Fernandez, C. 2006. Effects of environmental factors and
leaf chemistry on leaf litter colonization by fungi in a Mediterranean
shrubland. Pedobiologia 50(1): 1-10.
Osono, T. 2007. Ecology of ligninolytic fungi associated
with leaf litter decomposition. Ecological Research 22(6): 955-974.
Purahong, W., Kapturska, D., Pecyna, M.J., Schulz, E.,
Schloter, M., Buscot, F., Hofrichter, M. & Krüger, D. 2014. Influence of
different forest system management practices on leaf litter decomposition
rates, nutrient dynamics and the activity of ligninolytic enzymes: A case study
from Central European forests. PloS ONE 9(4): e93700.
Roy, R., Laskar, S. & Sen, S. 2006. Dibutyl phthalate,
the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiological
Research 161(2): 121-126.
Schimel, J.P. & Hättenschwiler, S. 2007. Nitrogen
transfer between decomposing leaves of different N status. Soil Biology and
Biochemistry 39(7): 1428-1436.
Schweitzer, J.A., Bailey, J.K., Rehill, B.J., Martinsen,
G.D., Hart, S.C., Lindroth, R.L., Keim, P. & Whitham, T.G. 2004.
Genetically based trait in a dominant tree affects ecosystem processes. Ecology
Letters 7(2): 127-134.
Shi, B., Luan, D., Wang, S., Zhao, L., Tao, L., Yuan, Q.
& Wang, X. 2015. Borneol-grafted cellulose for antifungal adhesion and
fungal growth inhibition. RSC Advances 5: 51947-51952.
Triebwasser, D.J., Tharayil, N., Preston, C.M. & Gerard,
P.D. 2012. The susceptibility of soil enzymes to inhibition by leaf litter
tannins is dependent on the tannin chemistry, enzyme class and vegetation
history. New Phytologist 196(4): 1122- 1132.
Ushio,
M., Balser, T.C. & Kitayama, K. 2013. Effects of condensed tannins in
conifer leaves on the composition and activity of the
soil microbial community in a tropical montane forest. Plant and Soil 365(1-2):
157-170.
Uusitalo, M., Kitunen,
V. & Smolander, A. 2008. Response of C and N transformations in birch soil
to coniferous resin volatiles. Soil Biology and Biochemistry 40(10):
2643-2649.
Wang, J., Wang, D., Yu, F., Shen, W., Zou, C., Zhang, R.
& Hou, P. 2014. Enzyme activity in rhizosphere soil of Cryptomeria
fortunei seedlings with simulated acid rain and litter. Journal of
Zhejiang Forestry College 31(3): 373-379.
Wang, Z., Zhao, X., Xu, W., Su, Y., You, Y., Liu, S., Hu,
Y., Yang, Y. & Zhang, Y. 2015. Response of microbial biomass and enzyme
activities in black soil to din-butyl phthalate contamination. Asian Journal
of Ecotoxicology 10(6): 199- 205.
Zhang, F., Guo, A., Li, Q., Li, H., Hu, M. & Wang, F.
2013. The allelopathic effects of five volatiles released from Eupatorium
adenophora on Trichoderma harzianum and Botrytis cinerea. Acta
Phytophylacica Sinica 40(2): 191-192.
Zhang, X., Liu, Z., Tian, N., Luc, N.T., Zhu, B. & Bing,
Y. 2015. Allelopathic effects of decomposed leaf litter from intercropped trees
on rape. Turkish Journal of Agriculture and Forestry 39(6): 898-908.
Zhang, X., Liu, Z. & Hu, W. 2016. Response of nutrient
release of Periploca sepium litter to soil petroleum contamination. CLEAN-Soil,
Air, Water 44(12): 1709-1716.
Zheng, Y. 2008. Antibitic functions and volatile organic
compounds from Pinus tabulaeformis Var. Mukdensis Uyeki and Betula
Platyphlla Suk. Northeast Forestry University.
Zhou, B., Han, L., Yin, Y., Wu, J., Sun, C., Ye, X. &
Bai, L. 2010. Effects of allelochemicals hexadecanoic acid on soil microbial
composition and biomass in rhizosphere of eggplant. Journal of Shenyang
Agricultural University 41(3): 275-278.
Zhou, B., Kong, C.H., Li, Y.H., Wang, P. & Xu, X.H.
2013. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere
with crop growth and the soil microbial community. Journal of Agricultural
and Food Chemistry 61(22): 5310- 5317.
*Pengarang
untuk surat-menyurat; email: zengwenliu2003@aliyun.com