Sains Malaysiana 48(3)(2019): 653–659
http://dx.doi.org/10.17576/jsm-2019-4803-19
Effect
of Alkaline Treatment on Structural Characterisation, Thermal Degradation and
Water Absorption Ability of Coir Fibre Polymer Composites
(Kesan Rawatan
Alkali terhadap Pencirian Struktur, Degradasi Terma dan Keupayaan
Serapan Air bagi Komposit Polimer Serabut Sabut Kelapa)
BEEN SEOK YEW1*, MARTINI MUHAMAD1, SAIFUL BAHRI MOHAMED1 & FWEN HOON WEE2
1Faculty
of Innovative Design & Technology, Universiti Sultan Zainal Abidin, 21030
Kuala Terengganu, Terengganu Darul Iman, Malaysia
2School
of Computer and Communication, Universiti Malaysia Perlis, 02600 Arau, Perlis
Indera Kayangan, Malaysia
Diserahkan: 4 September 2018/Diterima: 3 Januari 2019
ABSTRACT
The alkaline treatment with 5 wt. % sodium hydroxide (NaOH)
solution at room temperature for 24 and 48 h was performed on coir fibre. The
structural characterisation, thermal degradation and water absorption ability
of the untreated and NaOH-treated coir fibre polymer composites have been
studied. Scanning electron microscope (SEM) images showed that coir
fibres treated with NaOH have rough surface texture and the roughness of the
fibre surface becomes significant as the duration of the NaOH treatment
increased. Fourier transform
infrared (FTIR) spectra confirmed that NaOH treatment removed
hemicelluloses as evidenced by the absence of absorption bands at 1724.36 cm-1 and
changes the absorption intensity at bands 1244.09 cm-1and
1249.87 cm-1 due to the loss of lignin. NaOH-treated coir fibre
composites demonstrated better thermal stability at low temperature
degradation. At high temperature, the thermal stability was reduced due to the
decreased of residual lignin content. The water absorption of the NaOH-treated
coir fibre composites was lower than untreated coir composite contributed by
better interfacial adhesion between the NaOH-treated coir fibre to epoxy resin.
Keywords: Coir fibre; NaOH; polymer
ABSTRAK
Rawatan alkali dengan kepekatan 5 % bt. larutan natrium hidroksida
(NaOH) pada suhu bilik selama 24 dan 48 jam telah dibuat terhadap sabut kelapa.
Pencirian struktur, degradasi termal dan keupayaan serapan air terhadap
komposit polimer sabut kelapa tidak dirawat dan sabut kelapa dirawat-NaOH telah
dikaji. Imej daripada mikroskop elektron imbasan (SEM)
menunjukkan sabut kelapa dirawat-NaOH mempunyai permukaan yang kesat dan
kekesatan permukaan sabut kelapa menjadi ketara dengan penambahan tempoh
rawatan alkali. Spektra transformasi Fourier inframerah (FTIR) mengesahkan bahawa
rawatan NaOH menyingkirkan kandungan hemiselulosa yang dibuktikan oleh
ketiadaan jalur 1724.36 cm-1 serta mengubah keamatan jalur
1244.09 dan 1249.87 cm-1 yang disebabkan oleh kehilangan
lignin. Komposit polimer sabut kelapa dirawat-NaOH menunjukkan kestabilan
termal pada degradasi suhu rendah. Pada degradasi suhu yang tinggi, kestabilan
termal berkurang disebabkan oleh penurunan kandungan sisa lignin. Serapan air
oleh komposit polimer sabut kelapa dirawat-NaOH adalah lebih rendah daripada
komposit polimer sabut kelapa tidak dirawat disebabkan oleh lekatan yang lebih
baik antara sabut kelapa terawat dan matriks polimer.
Kata kunci: NaOH; polimer; serabut sabut kelapa
RUJUKAN
Abraham, E., Deepa, B., Pothen, L.A., Cintil,
J., Thomas, S., John, M.J., Anandjiwala, R. & Narine, S.S. 2013.
Environmental friendly method for the extraction of coir fibre and isolation of
nanofibre. Carbohydrate Polymers 92(2): 1477-1483.
Akhtar, M.N., Sulong, A.B., Radzi, M.K.F.,
Ismail, N.F., Raza, M.R., Muhamad, N. & Khan, M.A. 2016. Influence of
alkaline treatment and fiber loading on the physical and mechanical properties
of kenaf/polypropylene composites for variety of applications. Progress in
Natural Science: Materials International 26(6): 657-664.
Al-Oqla, F.M., Sapuan, S.M., Anwer, T., Jawaid,
M. & Hoque, M.E. 2015. Natural fiber reinforced conductive polymer
composites as functional materials: A review. Synthetic Metals 20:
42-54.
Amiri, A., Ulven, C.A. & Huo, S. 2015.
Effect of chemical treatment of flax fiber and resin manipulation on service
life of their composites using time-temperature superposition. Polymers 7(10):
1965-1978.
Azwa, Z.N., Yousif, B.F., Manalo, A.C. &
Karunasena, W. 2013. A review on the degradability of polymeric composites
based on natural fibres. Materials and Design 47: 424-442.
Beg, M.D.H. & Pickering, K.L. 2008.
Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced
polypropylene composites. Polymer Degradation and Stability 93(10): 1939-1946.
Brígida, A.I.S., Calado, V.M.A., Gonçalves,
L.R.B. & Coelho, M.A.Z. 2010. Effect of chemical treatments on properties
of green coconut fiber. Carbohydrate Polymers 79(4): 832-838.
Costa, M.L., Rezende, M.C. & de Almeida,
S.F.M. 2006. Effect of void content on the moisture absorption in polymeric
composites. Polymer-Plastics Technology and Engineering 45(6): 691-698.
Fiore, V., Di Bella, G. & Valenza, A. 2015.
The effect of alkaline treatment on mechanical properties of kenaf fibers and
their epoxy composites. Composites Part B: Engineering 68(2014): 14-21.
Gomes, A., Matsuo, T., Goda, K. & Ohgi, J. 2007. Development
and effect of alkali treatment on tensile properties of curaua fiber green
composites. Composites Part A: Applied Science and Manufacturing 38(8):
1811-1820.
Haque,
M.M., Ali, M.E., Hasan, M., Islam, M.N. & Kim, H. 2012. Chemical treatment
of coir fiber reinforced polypropylene composites. Industrial &
Engineering Chemistry Research 51(10): 3958-3965.
Ikhuoria,
E.U., Omorogbe, S.O., Agbonlahor, O.G., Iyare, N.O., Pillai, S. &
Aigbodion, A.I. 2017. Spectral analysis of the chemical structure of
carboxymethylated cellulose produced by green synthesis from coir fibre. Ciencia
e Tecnologia Dos Materiais 29(2): 55-62.
Kabir,
M.M., Wang, H., Lau, K.T. & Cardona, F. 2012. Chemical treatments on
plant-based natural fibre reinforced polymer composites: An overview. Composites
Part B: Engineering 43(7): 2883-2892.
Lee,
K.Y., Aitomäki, Y., Berglund, L.A., Oksman, K. & Bismarck, A. 2014. On the
use of nanocellulose as reinforcement in polymer matrix composites. Composites
Science and Technology 105: 15-27.
Li,
X., Tabil, L.G. & Panigrahi, S. 2007. Chemical treatments of natural fiber
for use in natural fiber-reinforced composites: A review. Journal of
Polymers and the Environment 15(1): 25-33.
Liu,
Y., Sun, B., Zheng, X., Yu, L. & Li, J. 2018. Integrated microwave and
alkaline treatment for the separation between hemicelluloses and cellulose from
cellulosic fibers. Bioresource Technology 247(2017): 859-863.
Nascimento,
L.F.C., Monteiro, S.N., Louro, L.H.L., Luz, F.S.D., Santos, H.L.D., Braga, F.D.
O. & Marçal, R.L.S. 2018. Charpy impact test of epoxy composites reinforced
with untreated and mercerized mallow fibers. Journal of Materials Research
and Technology 7(4): 520-527.
Methacanon,
P., Weerawatsophon, U., Sumransin, N., Prahsarn, C. & Bergado, D.T. 2010.
Properties and potential application of the selected natural fibers as limited
life geotextiles. Carbohydrate Polymers 82(4): 1090-1096.
Oushabi,
A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O. & El Bouari, A.
2017. The effect of alkali treatment on mechanical, morphological and thermal
properties of date palm fibers (DPFs): Study of the interface of
DPF-polyurethane composite. South African Journal of Chemical Engineering 23:
116-123.
Pickering,
K.L., Efendy, M.G.A. & Le, T.M. 2016. A review of recent developments in
natural fibre composites and their mechanical performance. Composites Part
A: Applied Science and Manufacturing 83: 98-112.
Punyamurthy,
R., Sampathkumar, D., Ranganagowda, R.P.G., Bennehalli, B. & Srinivasa,
C.V. 2017. Mechanical properties of abaca fiber reinforced polypropylene
composites: Effect of chemical treatment by benzenediazonium chloride. Journal
of King Saud University-Engineering Sciences 29(3): 289-294.
Qian,
S., Wang, H., Zarei, E. & Sheng, K. 2015. Effect of hydrothermal
pretreatment on the properties of moso bamboo particles reinforced polyvinyl
chloride composites. Composites Part B: Engineering 82: 23-29.
Raghavendra,
G., Shakuntala, O., Acharya, S.K. & Pal, S.K. 2014. Jute fiber reinforced
epoxy composites and comparison with the glass and neat epoxy composites. Journal
of Composite Materials 48(20): 2537-2547.
Sair,
S., Oushabi, A., Kammouni, A., Tanane, O., Abboud, Y. & El Bouari, A. 2018.
Mechanical and thermal conductivity properties of hemp fiber reinforced
polyurethane composites. Case Studies in Construction Materials 8:
203-212.
Sinha,
E. & Rout, S.K. 2009. Influence of fibre-surface treatment on structural,
thermal and mechanical properties of jute fibre and its composite. Bulletin
of Materials Science 32(1): 65-76.
Summerscales,
J., Virk, A. & Hall, W. 2010. A review of bast fibres and their composites:
Part 1-Fibres as reinforcements. Composites Part A 41(10): 1329-13335.
Valadez-Gonzalez,
A., Cervantes-Uc, J.M., Olayo, R. & Herrera-Franco, P.J. 1999. Effect of
fiber surface treatment on the fiber-matrix bond strength of natural fiber
reinforced composites. Composites Part B: Engineering 30(3): 309-320.
Zaman,
H.U. & Beg, M. 2014. Preparation, structure, and properties of the coir
fiber/polypropylene composites. Journal of Composite Materials 48(26):
3293-3301.
Zhang,
K., Wang, F., Liang, W., Wang, Z., Duan, Z. & Yang, B. 2018. Thermal and
mechanical properties of bamboo fiber reinforced epoxy composites. Polymers 8(6):
1-18.
Zhang,
L., Sun, Z., Liang, D., Lin, J. & Xiao, W. 2017. Preparation and
performance evaluation of PLA/coir fibre biocomposites. BioResources 12(4):
7349-7362.
*Pengarang
untuk surat-menyurat; email: bseokyew@gmail.com