Sains Malaysiana 48(3)(2019): 685–695
http://dx.doi.org/10.17576/jsm-2019-4803-23
Constrained Interpolation using
Rational Cubic Spline with Three Parameters
(Interpolasi
Berkekangan menggunakan Splin Kubus dengan
Tiga Parameter)
SAMSUL ARIFFIN
ABDUL
KARIM1,
MOHAMMAD
KHATIM
HASAN2
& ISHAK HASHIM3*
1Fundamental and
Applied Sciences Department and Centre for Smart Grid Energy Research
(CSMER), Institute of Autonomous System, Universiti
Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar,
Perak Darul Ridzuan, Malaysia
2Pusat Penyelidikan Teknologi Kecerdasan Buatan, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
3School of Mathematical
Sciences, Faculty of Science & Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 27 Mac 2018/Diterima: 5 Disember 2018
ABSTRACT
The C1 rational
cubic spline function (cubic/quadratic) with three parameters
is used to construct a constrained interpolating curve that lies
below or above an arbitrary straight line or between two straight
lines. The data dependent sufficient conditions for the rational
cubic interpolant bounded by two straight lines are derived on
one parameter, while the other two are free parameters that will
be useful for shape modification. Some numerical results will
be presented by using Mathematica software. Comparison with some
existing schemes shows that the proposed scheme outperforms the
existing schemes.
Keywords: Constrained interpolation;
continuity; rational cubic spline
ABSTRAK
Fungsi splin kubus
nisbah C1 dengan tiga parameter digunakan untuk membentuk satu lengkung berkekangan yang berada di bawah atau atas suatu
garis lurus
atau di antara dua garisan lurus. Syarat cukup bagi
lengkung kubus
nisbah terbatas di antara dua garisan
lurus yang bergantung
kepada data dihasilkan pada satu parameter dengan dua yang lain adalah parameter bebas yang berguna untuk perubahan bentuk. Beberapa hasil berangka akan ditunjuk dengan
menggunakan perisian
Mathematica. Perbandingan dengan
beberapa skema
sedia ada menunjukkan
bahawa skema
yang dicadangkan mengatasi skema sedia ada.
Kata kunci: Interpolasi
berkekangan; keselanjaran;
splin kubus nisbah
RUJUKAN
Abbas, M., Majid,
A.A., Awang, M.N.H. & Ali, J.M.
2012. Constrained shape preserving rational bi-cubic spline interpolation.
World Applied Sciences Journal 20: 790-800.
Bashir, U. &
Ali, J.M. 2013. Data visualization using rational trigonometric
spline. Journal of Applied Mathematics 2013: 531497.
Bastian-Walther,
M. & Schmidt, J.W. 1999. Range restricted interpolation using
Gregory’s rational cubic splines. Journal of Computational
and Applied Mathematics 103: 221-237.
Delbourgo, R. & Gregory,
J.A. 1985. The determination of derivative parameters for a monotonic
rational quadratic interpolant. IMA Journal of Numerical Analysis
5: 397-406.
Duan, Q., Wang, L.
& Twizell, E.H. 2005. A new C2
rational interpolation based on function values and constrained
control of the interpolant curves. Applied Mathematics and
Computation 161: 311-322.
Goodman, T.N.T.,
Ong, B.H. & Unsworth, K. 1991. Constrained
interpolation using rational cubic splines. In NURBS for Curve
and Surface Design (Geometric Design Publications), edited
by Farin, G. Philadelphia: Society for
Industrial & Applied. pp. 59-74.
Hussain, M.Z. &
Hussain, M. 2006. Visualization of data subject to positive constraint.
Journal of Information and Computing Sciences 1: 149-160.
Ibraheem, F., Hussain,
M., Hussain, M.Z. & Bhatti, A.A. 2012. Positive data visualization
using trigonometric polynomials. Journal of Applied Mathematics
2012: 247120.
Karim, S.A.A. &
Kong, V.P. 2014. Shape preserving interpolation using rational
cubic spline. Research Journal of Applied Sciences, Engineering
and Technology 8: 167-168.
Meek, D.S., Ong,
B.H. & Walton, D.J. 2003. Constrained interpolation with rational
cubics. Computer Aided Geometric Design 20: 253-275.
Sarfraz, M., Hussain,
M.Z. & Hussain, F. 2015. Shape preserving curves using quadratic
trigonometric splines. Applied Mathematics and Computation
265: 1126-1144.
Sarfraz, M., Hussain,
M.Z. & Hussain, M. 2013a. Modeling rational spline for visualization
of shaped data. Journal of Numerical Mathematics 21: 63-87.
Sarfraz, M., Irshad,
M. & Hussain, M.Z. 2013b. Reverse engineering of planar objects
using GAs. Sains Malaysiana 42(8):
1167-1179.
Shaikh, T.S., Sarfraz,
M. & Hussain, M.Z. 2011. Shape preserving constrained data
visualization using rational functions. Journal of Prime Research
in Mathematics 7: 35-51.
*Pengarang
untuk surat-menyurat;
email: ishak_h@ukm.edu.my