Sains Malaysiana 48(4)(2019): 735–744

http://dx.doi.org/10.17576/jsm-2019-4804-05 

 

Nutrient Mineralization and Soil Biology as Influenced by Temperature and Fertilizer Management Practices

(Pemineralan Nutrien dan Biologi Tanih yang Dipengaruhi oleh Suhu dan Amalam Pengurusan Baja)

 

UMME AMINUN NAHER1*, IMRAN ULLAH SARKER1, AFSANA JAHAN1, MD. MANIRUZZAMAN2, APURBA KANTI CHOUDHURY3, NAVIN KALRA4 & JATISH CHANDRA BISWAS1

 

1Soil Science Division, Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh

 

2Irrigation and Water Management Division, Bangladesh Rice Research Institute, Gazipur-1701

Bangladesh

 

3On Farm Research Division, Bangladesh Agricultural Research Division, Gazipur-1701, Bangladesh

 

4Krishi Gobeshona Foundation, Farmgate, Dhaka-1215, Bangladesh

 

Diserahkan: 11 Julai 2017/Diterima: 5 Februari 2019

 

ABSTRACT

High soil temperature due to climate change may influence nutrient mineralization and soil biology. An incubation study was conducted at Bangladesh Rice Research Institute to determine the effect of temperature (28°C and 45°C) on nutrient mineralization and soil microbial population of two different soils (terrace and saline soil) having different nutrient management practices (chemical fertilizer and integrated nutrient management). Terrace soil was clay loam and saline (6 ds m-1) soil was sandy loam in texture. Total N and organic C content was significantly high in terrace soil compared to saline soil. High temperature (45°C) enhanced C mineralization by 33% in integrated nutrient management (INM) of terrace soil and 41% in chemical fertilizer treatment in saline soil. The NH4+-N mineralization was increased by 3 fold in saline soil at 45°C as compared to the same at normal temperature of 28°C. Temperature and nutrient management options also significantly influenced phosphorus (P) and potassium (K) mineralization. High temperature significantly enhanced P mineralization in INM compared to chemical fertilizer amendment. In terrace soil, at 28°C temperature K mineralization was high in chemical fertilizer amended soil as compared to INM treatment. Temperature and nutrient sources affected soil bacterial population significantly compared to fungi, and actinomycetes. Phosphate solubilizing bacteria (PSB) were more resistant to high temperature compared to free-living N2 fixing bacteria. In general, high temperature and nutrient management practices affected C, N, P, K mineralization and soil biology; although mode of action varied and depending on soil types and nutrient management practices.

 

Keywords: Climate change; integrated nutrient management; soil microorganisms; soil nutrient mineralization

 

ABSTRAK

Suhu tanih yang tinggi disebabkan oleh perubahan iklim boleh mempengaruhi biologi pemineralan dan nutrien tanih. Kajian inkubator yang telah dijalankan di Institut Penyelidikan Beras Bangladesh untuk menentukan kesan suhu (28°C dan 45°C) terhadap nutrien pemineralan dan populasi mikrob tanih bagi dua tanih berbeza (tanih teres dan salin) yang mempunyai nutrien yang berbeza amalan pengurusan (baja kimia dan pengurusan nutrien bersepadu). Tanih teres lom liat dan tanih (6 ds m-1) salin adalah lom tekstur berpasir. Jumlah N dan kandungan C organik adalah tinggi dalam tanih teres berbanding tanih salin. Suhu yang tinggi (45°C) mempertingkatkan pemineralan C sebanyak 33% dalam pengurusan nutrien bersepadu (INM) bagi tanih teres dan 41% dalam baja kimia rawatan bagi tanih salin. Pemineralan bagi NH4+-N meningkat 3 kali lipatan dalam tanih salin pada suhu 45°C berbanding pada suhu biasa iaitu 28°C. Suhu dan pengurusan nutrien juga mempengaruhi pemineralan fosforus (P) dan kalium (K). Suhu tinggi meningkatkan pemineralan P dalam INM berbanding baja kimia pindaan. Dalam tanih teres, pada suhu 28°C, pemineralan K adalah tinggi dalam tanih baja kimia yang dipinda berbanding rawatan INM. Suhu dan sumber nutrien mempengaruhi populasi bakteria tanih secara signifikan berbanding kulat dan aktinomiset. Bakteria pemelarutan fosfat (PSB) berdaya tahan terhadap suhu tinggi berbanding bakteria hidup bebas N2. Secara amnya, suhu yang tinggi dan amalan pengurusan nutrien mempengaruhi pemineralan C, N, P, K dan biologi tanih; namun mod tindakan yang berubah dan bergantung kepada jenis tanih dan amalan pengurusan nutrien.

Kata kunci: Mikroorganisma tanih; nutrien pemineralan tanih; pengurusan nutrien bersepadu; perubahan iklim

RUJUKAN

Allison, I., Bindoff, N., Bindschadler, R., Cox, P., de Noblet- Ducoudre, N., England, M., Francis, J., Gruber, N., Haywood, A., Karoly, D., Kaser, G., Le Quéré, C., Lenton, T., Mann, M., McNeil, B., Pitman, A., Rahmstorf, S., Rignot, E., Schellnhuber, H.J., Schneider, S., Sherwood, S., Somerville, R., Steffen, K., Steig, E., Visbeck, M. & Weaver, A. 2009. The Copenhagen Diagnosis 2009: Updating the World on the Latest Climate Science. Sydney, Australia: The University of New South Wales Climate Change Research Centre (CCRC).

Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J. & Bååth, E. 2009. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Global Change Biol. 15: 2950-2957.

Bekku, Y.S., Nakatsubo, T., Kume, A. & Koizumi, H. 2004. Soil microbial biomass, respiration rate, and temperature dependence on a successional glacier foreland in Nylesund, Svalbard. Arct. Antarct. Alp. Res. 36(4): 395-399.

Benitez, C., Tejada, M. & Gonzalez, J. 2003. Kinetics of the mineralization of nitrogen in a pig slurry compost applied to soils. Compost Sci. Util. 11: 72-80.

Benton, J.J. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. New York: CRC Press LLC. pp. 27-41.

Biederbeck, V.O. & Campbell, C.A. 1973. Soil microbial activity as influenced by temperature trends and fluctuations. Can. J. Soil Sci. 53: 363-376.

Birgander, J., Reischke, S., Jones, D.L. & Rousk, J. 2013. Temperature adaptation of bacterial growth and 14C-glucose mineralisation in a laboratory study. Soil Biol. Biochem. 65: 294-303.

Biswas, J.C., Ladha, J.K. & Dazzo, F.B. 2000. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. Am. J. 64(5): 1644-1650.

Bustamante, M.A., Paredes, C., Marhuenda-Egea, F.C., Pérez- Espinosa, A., Bernal, M.P. & Moral, R. 2008. Cocomposting distillery wastes with animal manure: Carbon and nitrogen transformations and evaluation of compost stability. Chemosphere 72: 551-557.

Bremner, J.M. & Mulvaney, C.S. 1982. Total nitrogen. In Methods of Soil Analysis, edited by Page, A.L., Miller, R.H. & Keeny, D.R. Madison: American Society of Agronomy and Soil Science Society of America. pp. 1119-1123.

Classen, A.T., Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore, J.A.M., Cregger, M.A., Moorheadand, L.C. & Patterson, C.M. 2015. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6(8): 1-21.

Coˆte´, L., Brown, S., Pare´, D., Fyles, J. & Bauhus, J. 2000. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood. Soil Biol. Biochem. 32: 1079-1090.

Craine, J.M. & Gelderman, T.M. 2010. Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biol. Biochem. 43: 455-457.

Deressa, A. 2015. Effects of soil moisture and temperature on carbon and nitrogen mineralization in grassland soils fertilized with improved cattle slurry manure with and without manure additive. J. Environ. Hum. 2(1): 2373-8324.

Grierson, P.F., Comerford, N.B. & Jokela, E.J. 1998. Phosphorus mineralization kinetics and response of microbial phosphorus to wetting and drying in a Florida Spodosol. Soil Biol. Biochem. 30: 1323-1331.

https://earthobservatory.nasa.gov/Features/GlobalWarming/ page2.php. Accessed on June 26, 2017.

Islam, T. & Neelim, A. 2010. Climate Change in Bangladesh: A Closer Look into Temperature and Rainfall Data. Dhaka: The University Press Limited.

Joergensen, R.G., Brookes, P.C. & Jenkinson, D.S. 1990. Survival of the soil microbial biomass at elevated temperatures. Soil Biol. Biochem. 22: 1129-1136.

Lange, O.L. & Green, T.G.A. 2005. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecol. 142: 11-19.

Mahmud, K., Nasiruddin, K.M. & Hassan, L. 2016. Regeneration of sugarcane variety ISD 40 against salt stress condition. Sci. Tech. 2(8): 485-491.

Murphy, J. & Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36.

McKinley, V.L. & Vestal, J.R. 1984. Biokinetic analyses of adaptation and succession: Microbial activity in composting municipal sewage sludge. Appl. Environ. Microbiol. 47: 933-941.

Mengel, K. 1982. Dynamics and availability of major nutrients in soils. Adv. Soil Sci. 2: 65-131.

Mohammad, A. 2015. Assessing changes in soil microbial population with some soil physical and chemical properties. Int. J. Plant Animal Environ. Sci. 5(3): 2231-4490.

Naher, U.A., Othman, R. & Panhwar, Q.A. 2013. Culturable total and beneficial microbial occurrences in long-term nutrient deficit wetland rice soil. Aust. J. Crop Sci. 7(12): 1848-1853.

Panhwar, Q.A., Naher, U.A., Jusop, S., Othman, R., Latif, M.D.A. & Ismail, M.R. 2014. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS One 9(10): e97241.

Prasad, G., James, E.K., Mathan, N., Reddy, P.M., Reinhold- Hurek, B. & Ladha, J.K. 2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 183: 2634-2645.

Ranneklev, S. & Baath, E. 2001. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation. Appl. Environ. Microbiol. 67: 1116-1122.

Reitz, D. & Haynes, R. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 35: 845-854.

Richardson, C.J. & Marshall, P.E. 1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecol. Monogr. 56: 279-302.

Rinnan, R., Rousk, J., Yergeau, E., Kowalchuk, G.A. & Baath, E. 2009. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: Predicting responses to climate warming. Global Change Biol. 15: 2615-2625.

Rousk, J., Frey, S.D. & Baath, E. 2012. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Global Change Biol. 18: 3252-3258.

Scheffer, F. & Schachtschabel, P. 1989. Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart, Germany. p. 491.

Setia, R., Marschner, P., Baldock, J., Chittleborough, D., Smith, P. & Smith, J. 2011. Salinity effects on carbon mineralization in soils of varying texture. Soil Biol. Biochem. 43(9): 1908-1916.

Siqueira Neto, M., Scopel, E., Corbeels, M., Nunes Cardoso, A., Douzet, J.M., Feller, C., Piccolo, M.C., Cerri, C.C. & Bernoux, M. 2010. Soil carbon stocks under no-tillage mulch-based cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil Tillage Res. 110: 187-195.

Suter, H.C., Pengthamkeerati, P., Walker, C. & Chen, D. 2011. Influence of temperature and soil type on inhibition of urea hydrolysis by N-(nbutyl) thiophosphoric triamide in wheat and pasture soils in South Eastern Australia. Soil Res. 49: 315-319.

Thangarajan, R., Bolan, N.S., Naidu, R. & Surapaneni, A. 2015. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environ. Sci. Pollut. Res. Int. 22(12): 8843-8854.

Thompson, L.M. & Black, C.A. 1947. The effect of temperature on the mineralization of soil organic phosphorus. Soil Sci. Soc. Amer. Proc. 12: 323-326.

Tibbles, B.J. & Harris, J.M. 1996. Use of radio labelled thymidine and leucine to estimate bacterial production in soils from the continental Antarctica. Appl. Environ. Microbiol. 62: 694-701.

van Gestel, N.C., Dhungana, N., Tissue, D.T. & Zak, J.C. 2016. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem. Oecologia 180(1): 265-277.

Walkley, A.C. & Black, T.A. 1935. Estimation of soil organic carbon by chromic acid titration method. Soil Sci. 47: 29-38.

Walpola, B. & Arunakumara, K. 2010. Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils. J. Agr. Sci. 5: 9-18.

Whalen, J.K., Chang, C. & Olson, B.M. 2001. Nitrogen and phosphorus mineralization potentials of soils receiving repeated annual cattle manure applications. Biol. Fertil. Soils 34: 334-341.

Xe, R., Tong, C.L., Sun, Z.L., Tang, G.Y., Xiao, H.A. & Wu, J.S. 2007. Effects of temperature on organic carbon mineralization in paddy soils with different clay content. The Journal of Applied Ecology 18(10): 2245-2250.

Xu, X., Niu, S., Sherry, R.A., Zhou, X., Zhou, J.Y. & Luo, Y. 2012. Inter annual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Global Change Biol. 18: 1648-1656.

Yuan, B.C., Li, Z.Z., Liu, H., Gao, M. & Zhang, Y.Y. 2007. Microbial biomass and activity in salt affected soils under arid conditions. Appl. Soil Ecol. 35: 319-328.

 

*Pengarang untuk surat-menyurat; email: naher39@gmail.com

 

 

 

 

sebelumnya