Sains Malaysiana 48(4)(2019): 735–744
http://dx.doi.org/10.17576/jsm-2019-4804-05
Nutrient Mineralization and Soil Biology
as Influenced by Temperature and Fertilizer Management Practices
(Pemineralan Nutrien dan Biologi Tanih yang Dipengaruhi
oleh Suhu dan Amalam Pengurusan Baja)
UMME AMINUN NAHER1*, IMRAN ULLAH SARKER1, AFSANA JAHAN1, MD. MANIRUZZAMAN2, APURBA KANTI CHOUDHURY3, NAVIN KALRA4 & JATISH CHANDRA BISWAS1
1Soil Science Division,
Bangladesh Rice Research Institute, Gazipur-1701, Bangladesh
2Irrigation and Water
Management Division, Bangladesh Rice Research Institute, Gazipur-1701
Bangladesh
3On Farm Research
Division, Bangladesh Agricultural Research Division, Gazipur-1701, Bangladesh
4Krishi Gobeshona
Foundation, Farmgate, Dhaka-1215, Bangladesh
Diserahkan:
11 Julai 2017/Diterima: 5 Februari 2019
ABSTRACT
High soil temperature due to climate
change may influence nutrient mineralization and soil biology. An incubation
study was conducted at Bangladesh Rice Research Institute to determine the
effect of temperature (28°C and 45°C) on nutrient mineralization and soil
microbial population of two different soils (terrace and saline soil) having
different nutrient management practices (chemical fertilizer and integrated
nutrient management). Terrace soil was clay loam and saline (6 ds m-1)
soil was sandy loam in texture. Total N and organic C content was significantly
high in terrace soil compared to saline soil. High temperature (45°C) enhanced
C mineralization by 33% in integrated nutrient management (INM)
of terrace soil and 41% in chemical fertilizer treatment in saline soil. The NH4+-N
mineralization was increased by 3 fold in saline soil at 45°C as compared to
the same at normal temperature of 28°C. Temperature and nutrient management
options also significantly influenced phosphorus (P) and potassium (K)
mineralization. High temperature significantly enhanced P mineralization in INM compared
to chemical fertilizer amendment. In terrace soil, at 28°C temperature K
mineralization was high in chemical fertilizer amended soil as compared to INM treatment.
Temperature and nutrient sources affected soil bacterial population
significantly compared to fungi, and actinomycetes. Phosphate solubilizing
bacteria (PSB) were more resistant to high temperature compared to
free-living N2 fixing bacteria. In general, high temperature and
nutrient management practices affected C, N, P, K mineralization and soil
biology; although mode of action varied and depending on soil types and
nutrient management practices.
Keywords: Climate change; integrated
nutrient management; soil microorganisms; soil nutrient mineralization
ABSTRAK
Suhu tanih yang tinggi disebabkan
oleh perubahan iklim boleh mempengaruhi biologi pemineralan dan
nutrien tanih. Kajian inkubator yang telah dijalankan di Institut
Penyelidikan Beras Bangladesh untuk menentukan kesan suhu (28°C
dan 45°C) terhadap nutrien pemineralan dan populasi mikrob
tanih bagi dua tanih berbeza (tanih teres dan salin) yang mempunyai
nutrien yang berbeza amalan pengurusan (baja kimia dan pengurusan
nutrien bersepadu). Tanih teres lom liat dan tanih (6 ds m-1)
salin adalah lom tekstur berpasir. Jumlah N dan kandungan C organik
adalah tinggi dalam tanih teres berbanding tanih salin. Suhu yang
tinggi (45°C) mempertingkatkan pemineralan C sebanyak 33%
dalam pengurusan nutrien bersepadu (INM) bagi tanih teres dan
41% dalam baja kimia rawatan bagi tanih salin. Pemineralan bagi
NH4+-N meningkat 3 kali lipatan dalam tanih salin pada suhu 45°C
berbanding pada suhu biasa iaitu 28°C. Suhu dan pengurusan
nutrien juga mempengaruhi pemineralan fosforus (P) dan kalium
(K). Suhu tinggi meningkatkan pemineralan P dalam INM berbanding
baja kimia pindaan. Dalam tanih teres, pada suhu 28°C, pemineralan
K adalah tinggi dalam tanih baja kimia yang dipinda berbanding
rawatan INM. Suhu dan sumber nutrien mempengaruhi populasi bakteria
tanih secara signifikan berbanding kulat dan aktinomiset. Bakteria
pemelarutan fosfat (PSB) berdaya tahan terhadap suhu tinggi berbanding
bakteria hidup bebas N2. Secara amnya, suhu yang tinggi dan amalan
pengurusan nutrien mempengaruhi pemineralan C, N, P, K dan biologi
tanih; namun mod tindakan yang berubah dan bergantung kepada jenis
tanih dan amalan pengurusan nutrien.
Kata kunci: Mikroorganisma tanih;
nutrien pemineralan tanih; pengurusan nutrien bersepadu; perubahan
iklim
RUJUKAN
Allison, I., Bindoff,
N., Bindschadler, R., Cox, P., de Noblet- Ducoudre, N., England, M., Francis,
J., Gruber, N., Haywood, A., Karoly, D., Kaser, G., Le Quéré, C., Lenton, T.,
Mann, M., McNeil, B., Pitman, A., Rahmstorf, S., Rignot, E., Schellnhuber, H.J.,
Schneider, S., Sherwood, S., Somerville, R., Steffen, K., Steig, E., Visbeck,
M. & Weaver, A. 2009. The Copenhagen Diagnosis 2009: Updating the World
on the Latest Climate Science. Sydney, Australia: The University of New
South Wales Climate Change Research Centre (CCRC).
Bárcenas-Moreno, G.,
Gómez-Brandón, M., Rousk, J. & Bååth, E. 2009. Adaptation of soil microbial
communities to temperature: Comparison of fungi and bacteria in a laboratory
experiment. Global Change Biol. 15: 2950-2957.
Bekku, Y.S., Nakatsubo,
T., Kume, A. & Koizumi, H. 2004. Soil microbial biomass, respiration rate,
and temperature dependence on a successional glacier foreland in Nylesund,
Svalbard. Arct. Antarct. Alp. Res. 36(4): 395-399.
Benitez, C., Tejada, M.
& Gonzalez, J. 2003. Kinetics of the mineralization of nitrogen in a pig
slurry compost applied to soils. Compost Sci. Util. 11: 72-80.
Benton, J.J. 2001. Laboratory
Guide for Conducting Soil Tests and Plant Analysis. New York: CRC Press
LLC. pp. 27-41.
Biederbeck, V.O. & Campbell,
C.A. 1973. Soil microbial activity as influenced by temperature trends and
fluctuations. Can. J. Soil Sci. 53: 363-376.
Birgander, J., Reischke,
S., Jones, D.L. & Rousk, J. 2013. Temperature adaptation of bacterial
growth and 14C-glucose mineralisation in a laboratory study. Soil Biol.
Biochem. 65: 294-303.
Biswas, J.C., Ladha,
J.K. & Dazzo, F.B. 2000. Rhizobia inoculation improves nutrient uptake and
growth of lowland rice. Soil Sci. Soc. Am. J. 64(5): 1644-1650.
Bustamante, M.A.,
Paredes, C., Marhuenda-Egea, F.C., Pérez- Espinosa, A., Bernal, M.P. &
Moral, R. 2008. Cocomposting distillery wastes with animal manure: Carbon and
nitrogen transformations and evaluation of compost stability. Chemosphere 72:
551-557.
Bremner, J.M. &
Mulvaney, C.S. 1982. Total nitrogen. In Methods of Soil Analysis, edited
by Page, A.L., Miller, R.H. & Keeny, D.R. Madison: American Society of
Agronomy and Soil Science Society of America. pp. 1119-1123.
Classen, A.T.,
Sundqvist, M.K., Henning, J.A., Newman, G.S., Moore, J.A.M., Cregger, M.A.,
Moorheadand, L.C. & Patterson, C.M. 2015. Direct and indirect effects of
climate change on soil microbial and soil microbial-plant interactions: What
lies ahead? Ecosphere 6(8): 1-21.
Coˆte´, L., Brown, S.,
Pare´, D., Fyles, J. & Bauhus, J. 2000. Dynamics of carbon and nitrogen
mineralization in relation to stand type, stand age and soil texture in the
boreal mixed wood. Soil Biol. Biochem. 32: 1079-1090.
Craine, J.M. &
Gelderman, T.M. 2010. Soil moisture controls on temperature sensitivity of soil
organic carbon decomposition for a mesic grassland. Soil Biol. Biochem. 43:
455-457.
Deressa, A. 2015.
Effects of soil moisture and temperature on carbon and nitrogen mineralization
in grassland soils fertilized with improved cattle slurry manure with and
without manure additive. J. Environ. Hum. 2(1): 2373-8324.
Grierson, P.F.,
Comerford, N.B. & Jokela, E.J. 1998. Phosphorus mineralization kinetics and
response of microbial phosphorus to wetting and drying in a Florida Spodosol. Soil
Biol. Biochem. 30: 1323-1331.
https://earthobservatory.nasa.gov/Features/GlobalWarming/
page2.php. Accessed on June 26, 2017.
Islam, T. & Neelim,
A. 2010. Climate Change in Bangladesh: A Closer Look into Temperature and
Rainfall Data. Dhaka: The University Press Limited.
Joergensen, R.G.,
Brookes, P.C. & Jenkinson, D.S. 1990. Survival of the soil microbial
biomass at elevated temperatures. Soil Biol. Biochem. 22: 1129-1136.
Lange, O.L. & Green,
T.G.A. 2005. Lichens show that fungi can acclimate their respiration to
seasonal changes in temperature. Oecol. 142: 11-19.
Mahmud, K., Nasiruddin,
K.M. & Hassan, L. 2016. Regeneration of sugarcane variety ISD 40 against
salt stress condition. Sci. Tech. 2(8): 485-491.
Murphy, J. & Riley,
J.P. 1962. A modified single solution method for the determination of phosphate
in natural waters. Anal. Chim. Acta 27: 31-36.
McKinley, V.L. &
Vestal, J.R. 1984. Biokinetic analyses of adaptation and succession: Microbial
activity in composting municipal sewage sludge. Appl. Environ. Microbiol. 47:
933-941.
Mengel, K. 1982.
Dynamics and availability of major nutrients in soils. Adv. Soil Sci. 2:
65-131.
Mohammad, A. 2015.
Assessing changes in soil microbial population with some soil physical and
chemical properties. Int. J. Plant Animal Environ. Sci. 5(3): 2231-4490.
Naher, U.A., Othman, R.
& Panhwar, Q.A. 2013. Culturable total and beneficial microbial occurrences
in long-term nutrient deficit wetland rice soil. Aust. J. Crop Sci. 7(12):
1848-1853.
Panhwar, Q.A., Naher,
U.A., Jusop, S., Othman, R., Latif, M.D.A. & Ismail, M.R. 2014. Biochemical
and molecular characterization of potential phosphate-solubilizing bacteria in
acid sulfate soils and their beneficial effects on rice growth. PLoS One 9(10):
e97241.
Prasad, G., James, E.K.,
Mathan, N., Reddy, P.M., Reinhold- Hurek, B. & Ladha, J.K. 2001. Endophytic
colonization of rice by a diazotrophic strain of Serratia marcescens. J.
Bacteriol. 183: 2634-2645.
Ranneklev, S. &
Baath, E. 2001. Temperature-driven adaptation of the bacterial community in
peat measured by using thymidine and leucine incorporation. Appl. Environ.
Microbiol. 67: 1116-1122.
Reitz, D. & Haynes,
R. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial
activity. Soil Biol. Biochem. 35: 845-854.
Richardson, C.J. &
Marshall, P.E. 1986. Processes controlling movement, storage, and export of
phosphorus in a fen peatland. Ecol. Monogr. 56: 279-302.
Rinnan, R., Rousk, J.,
Yergeau, E., Kowalchuk, G.A. & Baath, E. 2009. Temperature adaptation of
soil bacterial communities along an Antarctic climate gradient: Predicting
responses to climate warming. Global Change Biol. 15: 2615-2625.
Rousk, J., Frey, S.D.
& Baath, E. 2012. Temperature adaptation of bacterial communities in
experimentally warmed forest soils. Global Change Biol. 18: 3252-3258.
Scheffer, F. &
Schachtschabel, P. 1989. Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart,
Germany. p. 491.
Setia, R., Marschner,
P., Baldock, J., Chittleborough, D., Smith, P. & Smith, J. 2011. Salinity
effects on carbon mineralization in soils of varying texture. Soil Biol.
Biochem. 43(9): 1908-1916.
Siqueira Neto, M., Scopel, E., Corbeels,
M., Nunes Cardoso, A., Douzet, J.M., Feller, C., Piccolo, M.C., Cerri, C.C.
& Bernoux, M. 2010. Soil carbon stocks under no-tillage mulch-based
cropping systems in the Brazilian Cerrado: An on-farm synchronic assessment. Soil
Tillage Res. 110: 187-195.
Suter, H.C., Pengthamkeerati, P., Walker,
C. & Chen, D. 2011. Influence of temperature and soil type on inhibition of
urea hydrolysis by N-(nbutyl) thiophosphoric triamide in wheat and pasture
soils in South Eastern Australia. Soil Res. 49: 315-319.
Thangarajan, R., Bolan, N.S., Naidu, R.
& Surapaneni, A. 2015. Effects of temperature and amendments on nitrogen
mineralization in selected Australian soils. Environ. Sci. Pollut. Res. Int. 22(12): 8843-8854.
Thompson, L.M. & Black, C.A. 1947.
The effect of temperature on the mineralization of soil organic phosphorus. Soil
Sci. Soc. Amer. Proc. 12: 323-326.
Tibbles, B.J. & Harris, J.M. 1996.
Use of radio labelled thymidine and leucine to estimate bacterial production in
soils from the continental Antarctica. Appl. Environ. Microbiol. 62:
694-701.
van Gestel, N.C., Dhungana, N., Tissue,
D.T. & Zak, J.C. 2016. Seasonal microbial and nutrient responses during a
5-year reduction in the daily temperature range of soil in a Chihuahuan Desert
ecosystem. Oecologia 180(1): 265-277.
Walkley, A.C. & Black, T.A. 1935.
Estimation of soil organic carbon by chromic acid titration method. Soil
Sci. 47: 29-38.
Walpola, B. & Arunakumara, K. 2010.
Effect of salt stress on decomposition of organic matter and nitrogen
mineralization in animal manure amended soils. J. Agr. Sci. 5: 9-18.
Whalen, J.K., Chang, C. & Olson, B.M.
2001. Nitrogen and phosphorus mineralization potentials of soils receiving
repeated annual cattle manure applications. Biol. Fertil. Soils 34:
334-341.
Xe, R., Tong, C.L., Sun, Z.L., Tang,
G.Y., Xiao, H.A. & Wu, J.S. 2007. Effects of temperature on organic carbon
mineralization in paddy soils with different clay content. The Journal of
Applied Ecology 18(10): 2245-2250.
Xu, X., Niu, S., Sherry, R.A., Zhou, X.,
Zhou, J.Y. & Luo, Y. 2012. Inter annual variability in responses of
belowground net primary productivity (NPP) and NPP partitioning to long-term
warming and clipping in a tallgrass prairie. Global Change Biol. 18:
1648-1656.
Yuan, B.C., Li, Z.Z., Liu, H., Gao, M.
& Zhang, Y.Y. 2007. Microbial biomass and activity in salt affected soils
under arid conditions. Appl. Soil Ecol. 35: 319-328.
*Pengarang untuk
surat-menyurat; email: naher39@gmail.com