Sains Malaysiana 48(4)(2019): 851–860

http://dx.doi.org/10.17576/jsm-2019-4804-17

 

Green Synthesis of Ag Nanoparticles and Their Performance towards Antimicrobial Properties

(Sintesis Hijau Nanozarah Ag dan Prestasi ke Arah Sifat Antimikrob)

 

SUNDERISHWARY S MUNIANDY1, S SASIDHARAN2 & HOOI LING LEE1*

 

1Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

2Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

Diserahkan: 11 April 2018/Diterima: 19 Januari 2019

 

ABSTRACT

Green synthesis is a forthcoming trend in the nanotechnology field where classical methods of synthesis are now replaced by inexpensive and eco-friendly methods. In this study, a green method has been developed for the synthesis of silver nanoparticles (AgNPs) where AgNPs were synthesised using water-based facile hydrothermal method. Silver nitrate (AgNO3) and polyvinylpyrrolidone (PVP) were used as precursor and reducing agents to produce AgNPs. The molar ratio effect of the precursor and stabiliser, its reaction temperature and reaction time were investigated. X-ray Powder Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and UV-Vis Spectrometry were used to characterise the AgNPs. The as-synthesized AgNPs with different molar ratios of the precursor to stabiliser were tested for antibacterial activities using Gram-positive bacteria (Bacillus subtilis) and Gram-negative bacteria (Escherichia coli). All the AgNPs samples exhibited antibacterial activities that were stronger against Gram-negative bacteria, as compared with Gram-positive bacteria. The diameter of the zone of inhibition (ZOI) increased with the increase of the AgNO3: PVP molar ratios. The results obtained proved that uniform AgNPs synthesized via green techniques have a high potential of influencing applications involving antimicrobial properties.

 

Keywords: Antibacterial activities; green synthesis; hydrothermal; nanoparticles; silver

 

ABSTRAK

Sintesis hijau adalah trend akan datang dalam bidang nanoteknologi yang menggantikan kaedah sintesis tradisi dengan kaedah yang mesra alam dan murah. Dalam kajian ini, kaedah hijau telah dibangunkan untuk mensintesis nanozarah perak (AgNPs) dengan AgNPs disintesis menggunakan air-berdasarkan kaedah reaksi mudah hidroterma. Perak nitrat (AgNO3) dan polivinilpirolidon (PVP) telah digunakan sebagai pelopor dan ejen penurunan untuk menghasilkan AgNPs. Kesan nisbah molar pelopor dan penstabil, suhu tindak balas dan masa tindak balas telah dikaji. Ujian X-Ray Pembelauan Serbuk (XRD), Pancaran Medan Mikroskop Elektron Pengimbas (FESEM) dan Spektroskopi UV-Vis digunakan untuk mencirikan AgNPs. AgNPs disintesis dengan nisbah molar yang berbeza daripada pelopor dan penstabil telah diuji untuk aktiviti antibakteria menggunakan bakteria Gram-positif (Bacillus subtilis) dan bakteria Gram-negatif (Escherichia coli). Semua sampel AgNPs menunjukkan aktiviti anti-bakteria yang kuat terhadap bakteria Gram-negatif, berbanding dengan bakteria Gram-positif. Zon diameter perencatan (ZOI) meningkat dengan peningkatan nisbah molar AgNO3: PVP. Keputusan yang diperoleh membuktikan bahawa AgNPs berseragam yang disintesis melalui teknik hijau berpotensi tinggi untuk mempengaruhi aplikasi yang melibatkan sifat antimikrob.

 

Kata kunci: Aktiviti anti-bakteria; hidroterma; nanozarah; perak; sintesis hijau

RUJUKAN

Abou, El-Nour., Kholoud, M.M., Ala’a, Eftaiha., Abdulrhman, Al-Warthan. & Reda A.A., Ammar. 2010. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry 3(3): 135-140.

Anastas, P. & Eghbali, N. 2010. Green chemistry: Principles and practice. Chem. Soc. Rev. 39(1): 301-312.

Banik, B. & Dhekial, A. 2015. A biological approach to synthesis of silver nanoparticles using aqueous leaf extract of Houttuynia cordata. International Journal of Materials and Biomaterials Applications 5(2): 10-16.

Chauhan, R., Abhishek, K. & Jayanthi, A. 2013. A biological approach to the synthesis of silver nanoparticles with Streptomyces sp. and its antimicrobial activity. Scientia Pharmaceutica 81(2): 607-621.

Chook, S., Chia, C., Zakaria, S., Ayob, M., Kah, C., Huang, N., Neoh, H., Lim, H., Rahman, J. & Raha Mohd Fadhil, R.A.R. 2012. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Research Letters 7(1): 541.

Chou, K.S. & Lai, Y.S. 2014. Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Materials Chemistry and Physics 83: 82-88.

Gandhi, H. & Khan, S. 2016. Biological synthesis of silver nanoparticles and its antibacterial activity. Journal of Nanomedicine & Nanotechnology 7(2): 2-4.

Gharibshahi, L., Saion, E., Gharibshahi, E., Shaari, A.H. & Matori, K.A. 2017. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 10(4): 402.

Genuino, H., Huang, H., Njagi, E., Stafford, L. & Suib, S.L. 2012. A review of green synthesis of nanophase inorganic materials for green chemistry applications. Green Nanoscience 8: 217-244.

Gudikandula, K. & Maringanti, S.C. 2016. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. Journal of Experimental Nanoscience 11(9): 714-721.

Hebeish, A., El-Naggar, M.E., Fouda, M.M.G., Ramadan, M.A., Al-Deyab, S.S. & El-Rafie, M.H. 2011. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers 86(2): 936-940.

Hsu, S.L.C. & Wu, R.T. 2011. Preparation of silver nanoparticle with different particle sizes for low-temperature sintering. International Conference on Nanotechnology and Biosensors 2: 55-58.

Kan, C.X., Zhu, J.J. & Zhu, X.G. 2008. Silver nanostructures with well-controlled shapes: Synthesis, characterization and growth mechanisms. Journal of Physics D: Applied Physics 41(15): 155304.

Khademalrasool, M. & Farbod, M. 2015. A simple and high yield solvothermal synthesis of uniform silver nanowires with controllable diameters. Journal of Nanostructures 5: 415-422.

Khodashenas, B. & Ghorbani, H.R. 2015. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry. http://dx.doi.org/10.1016/j.arabjc.2014.12.014.

Korte, K. 2007. Rapid synthesis of silver nanowires. National Nanotechnology Infrastructure Network. pp. 28-29.

Landage, S.M. 2014. Synthesis of nanosilver using chemical reduction methods. International Journal of Advanced Research in Engineering and Applied Sciences 3(5): 14-22.

Mahmudin, L., Suharyadi, E., Utomo, A.B.S. & Abraha, K. 2016. Influence of stabilising agent and synthesis temperature on the optical properties of silver nanoparticles as active materials in surface plasmon resonance (SPR) biosensor. AIP Conference Proceedings 1725(1): 020041.

Maratha, A.K. 2011. Green technique-solvent free. International Journal of Research in Ayurveda & Pharmacy 2(4): 1079- 1086.

Mehr, F.P., Masoumeh, K. & Parya, V. 2012. Synthesis of nano- Ag particles using sodium borohydride. Oriental Journal of Chemistry 31(3): 1831-1833.

Muniandy, S., Kaus, T., Sasidharan, M. & Lee. 2017. One-step green synthesis of TiO2-Ag nanocomposites and their performance towards photocatalytic activities and antimicrobial properties. Malaysian Journal of Catalysis 2: 28-34.

Muzamil, M., Khalid, N., Aziz, M.D. & Abbas, S.A. 2014. Synthesis of silver nanoparticles by silver salt reduction and its characterization. IOP Conference Series: Materials Science and Engineering 60: 12034.

Naima, M., Moulai-Mostefa, N. & Yacine, B. 2015. Effects of operating parameters on the structural properties of silver particles synthesized by chemical reduction using Poly(N-Vinylpyrrolidone). Particulate Science and Technology 33(5): 482-487.

Natsuki, J. 2015. A review of silver nanoparticles: Synthesis methods, properties and applications. International Journal of Materials Science and Applications 4(5): 325.

Niknejad, F., Mojtaba, N., Roshanak, D.G. & Maryam, M. 2015. Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae. Current Medical Mycology 1(3): 17-24.

Noordeen, S., Kaliyaperumal, K. & Parveen, M.N. 2013. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. International Journal of Engineering Research and Technology 2(4): 388-397.

Nurani, S.J., Chandan Saha, K., Rahman Khan, M.A. & Hossain Sunny, S.M. 2015. Silver nanoparticles synthesis, properties, applications and future perspectives: A short review. IOSR Journal of Electrical and Electronics Engineering Ver. I 10(6): 117-126.

Oku. 2016. World’s largest Science, Technology & Medicine Agriculture and Biological Sciences Grain Legume. United Kingdom: IntechOpen.

Pacioni, N.L., Borsarelli, C.D., Rey, V. & Veglia, A.V. 2015. Silver nanoparticle applications. Engineering Materials. pp. 13-46.

Rashid, M.U., Md Khairul, H.B. & Quayum, M.E. 2013. Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of Vitamin C tablets. Dhaka University Journal of Pharmaceutical Sciences 12(1): 29-33.

Shankar, R., Groven, L., Amert, A., Whites, K.W. & Kellar, J.J. 2011. Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. Journal of Materials Chemistry 21: 10871.

Shateri, K.A. & Yazdanshenas, M.E. 2010. Superhydrophobic antibacterial cotton textiles. Journal of Colloid and Interface Science 351(1): 293-298.

Song, Y.J., Wang, M., Zhang, X.Y., Wu, J.Y. & Zhang, T. 2014. Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires. Nanoscale Research Letters 9(1): 17.

Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K. & Upadhyay, S.N. 2016. Green synthesis of silver nanoparticles: A review. Green and Sustainable Chemistry 6(1): 34-56.

Tran, Q.H., Nguyen, V.Q. & Le, A-T. 2013. Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology 4(3): 33001.

Wang, G.H., Zhu, J.J., Kan, C.X., Wan, J.G. & Han, M. 2011. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. Journal of Nanomaterials 2011: 982547.

Yan, J., Zou, G., Wu, A., Ren, J., Yan, J., Hu, A., Liu, L. & Zhou, Y.N. 2012. Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packaging application. Journal of Physics: Conference Series 379: 12024.

Yang, X. 2017. A study on antimicrobial effects of nanosilver for drinking water disinfection. Springer Theses 1: 13-36.

Yen, S.C. & Mashitah, M.D. 2013. Biosynthesis of silver nanoparticles from schizophyllum commune and in vitro antibacterial and antifungal activity studies. Journal of Physical Science 24(2): 83-96.

Yu, B., Leung, K.M., Guo, Q., Lau, W.M. & Yang, J. 2011. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22(11): 115603.

Zewde, B., Ambaye, A., Stubbs III, J. & Raghavan, D. 2016. A review of stabilized silver nanoparticles-synthesis, biological properties, characterization, and potential areas of applications. JMS Nanotechnology & Nanomedicine 4(2): 1-14.

Zhang, G., Shen, X. & Yang, Y. 2011. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. Journal of Physical Chemistry C 115: 7145-7152.

Zhang, X.F., Liu, Z.G., Shen, W. & Gurunathan, S. 2016. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences 17(9): E1534.

Zhong, G.F., Iwasaki, T., Nakayama, N. & Matsumoto, H. 2016. Single vertically aligned walled carbon nanotubes. Journal of Physics: Conference Series 755: 11001.

Zhou, G. & Wang, W. 2012. Synthesis of silver nanoparticles and their antiproliferation against human lung cancer cells in vitro. Oriental Journal of Chemistry 28(2): 651-655.

Zou, J., Xu, Y., Hou, B., Wu, D. & Sun, Y. 2007. Controlled growth of silver nanoparticles in a hydrothermal process. China Particuology 5(3): 206-212.

 

*Pengarang untuk surat-menyurat; email: hllee@usm.my

 

 

 

 

sebelumnya