Sains Malaysiana 48(4)(2019): 871–876

http://dx.doi.org/10.17576/jsm-2019-4804-19

 

Palm Oil Mill Effluent as Alternate Carbon Source for Ammonia Removal in Wastewater Treatment

(Efluen Kilang Kelapa Sawit sebagai Punca Karbon Silih Ganti untuk Penyingkiran Ammonia dalam Rawatan Air Sisa)

 

LEH-MING LOH1, YI-WEI YAN1*, PUI-WOON YAP1, RUPINEE NADARAJAN1 & AUGUSTINE SOON-HOCK ONG2

 

1Biosciences Department, School of Science and Engineering, Malaysia University of Science and Technology, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 

2Malaysian Oil Scientists' and Technologists' Association (MOSTA), C3A-10, 4th Floor, Damansara Intan, 1, Jalan SS 20/7, 47400 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 17 April 2018/Diterima: 3 September 2018

 

ABSTRACT

To address high demand in searching for carbon sources alternatives in ammonia wastewater treatment, comparison among various carbon sources in term of pollutants reduction efficiency was essential to determine the most cost-effective carbon source selection for industry scale in bulk amount. This study focuses on investigating palm oil mill effluent (POME) as the alternate carbon source for supporting ammonia oxidizing bacteria (AOB) in ammonia removal of glove industrial wastewater treatment. Ammonia reduction efficiency was compared between POME with molasses, one of the most commonly used carbon sources. POME as carbon source in ammonia wastewater treatment had shown significant comparable reduction efficiency as compared to molasses. Furthermore, the study on various mixture ratios of POME-molasses had also shown further improvement in ammonia reduction efficiency. At the optimum ratio of 50:50 (v/v) POME-molasses as carbon source mixture, the ammonia reduction in the treatment system had achieved 53.11% reduction, which reduced ammonia content down to 10.49 mg/L NH3. In this study, the results suggested that POME showing great potential to be the new cost-effective carbon source alternative in industry scale treatment.

 

Keywords: Ammonia removal; carbon source; molasses; palm oil mill effluent; wastewater treatment

 

ABSTRAK

Untuk memenuhi permintaan yang tinggi dalam mencari punca karbon alternatif dalam rawatan air sisa berammonia, perbandingan antara punca karbon daripada sudut kecekapan mengurangkan pencemaran penting untuk menentukan pemilihan punca karbon yang paling menjimatkan kos bagi skala industri dalam jumlah pukal. Kajian ini memfokus kepada penggunaan efluen kilang kelapa sawit (POME) sebagai punca karbon alternatif untuk sokongan pengoksidaan ammonia bakteria (AOB) dalam rawatan pembuangan sisa ammonia bagi industri sarung tangan. Kecekapan pengurangan ammonia dibandingkan antara POME dengan molases, salah satu punca karbon yang sering digunakan. POME sebagai punca karbon dalam rawatan air sisa ammonia telah menunjukkan kecekapan pengurangan yang ketara berbanding molases. Selain itu, kajian menggunakan pelbagai nisbah campuran molases-POME juga menunjukkan peningkatan kecekapan pengurangan ammonia. Pada nisbah optimum, 50: 50 (v/v) POME-Molases sebagai campuran punca karbon, pengurangan ammonia dalam sistem rawatan telah mencapai pengurangan 53.11%, yang mengurangkan kandungan ammonia ke 10.49 mg/L NH3. Dalam kajian ini, keputusan menunjukkan POME menunjukkan potensi yang tinggi untuk menjadi punca karbon alternatif dengan kos efektif dalam rawatan berskala industri.

 

Kata kunci: Efluen kilang kelapa sawit; molases; penyingkiran ammonia; punca karbon; rawatan air sisa

RUJUKAN

Adela, B.N., Muzzammil, N., Loh, S.K. & Choo, Y.M. 2014. Characteristics of palm oil mill effluent (POME) in an anaerobic biogas digester. Asian Journal of Microbiology, Biotechnology and Environmental Sciences Paper 16(1): 225-231.

Aljuboori, A.H.R., Uemura, Y., Osman, N.B. & Yusup, S. 2014. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source. Bioresource Technology 171: 66-70.

Bala, J.D., Lalung, J. & Ismail, N. 2014. Palm oil mill effluent (POME) treatment microbial communities in an anaerobic digester: A review. International Journal of Scientific and Research Publications 4(6): 1-24.

Department of Environment Malaysia. 2009. Environmental quality (Industrial Effluent) regulations 2009, Environmental Quality Act 1974 (Act 127).

Duraisam, R., Salelgn, K. & Berekete, A.K. 2017. Production of beet sugar and bio-ethanol from sugar beet and it bagasse: A review. International Journal of Engineering Trends and Technology 43(4): 222-233.

Gamaralalage, D., Sawai, O. & Nunoura, T. 2016. Effectiveness of available wastewater treatment facilities in rubber production industries in Sri Lanka. International Journal of Environmental Science and Development 7(12): 940.

Heuzé, V., Tran, G., Bastianelli, D. & Lebas, F. 2015. Palm oil mill effluent. Feedipedia http://www.feedipedia.org/node/15395.

Igbinosa, E.O. & Igiehon, O.N. 2015. The impact of cassava effluent on the microbial and physicochemical characteristics on soil dynamics and structure. Jordan Journal of Biological Sciences 8(2): 107-112.

Kanu, I. & Achi, O.K. 2011. Industrial effluents and their impact on water quality of receiving rivers in Nigeria. Journal of Applied Technology in Environmental Sanitation 1(1): 75-86.

Kavitha, B., Jothimani, P. & Rajannan, G. 2013. Empty fruit bunch-a potential organic manure for agriculture. International Journal of Science, Environment and Technology 2(5): 930- 937.

Keluskar, R., Nerurkar, A. & Desai, A. 2013. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresource Technology 130: 390-397.

Mohammadi, M., Man, H.C., Hassan, M.A. & Yee, P.L. 2010. Treatment of wastewater from rubber industry in Malaysia. African Journal of Biotechnology 9(38): 6233-6243.

Nelson, K.Y., McMartin, D.W., Yost, C.K., Runtz, K.J. & Ono, T. 2013. Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination. Environmental Science and Pollution Research 20(8): 5441-5448.

Ohimain, E.I., Daokoru-Olukole, C., Izah, S.C., Eke, R.A. & Okonkwo, A.C. 2017. Microbiology of palm oil mill effluents. Journal of Microbiology and Biotechnology Research 2(6): 852-857.

Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology 101(6): 1533-1543.

Poh, P.E., Yong, W.J. & Chong, M.F. 2010. Palm oil mill effluent (POME) characteristic in high crop season and the applicability of high-rate anaerobic bioreactors for the treatment of POME. Industrial & Engineering Chemistry Research 49(22): 11732-11740.

Qureshi, N., Saha, B.C., Dien, B., Hector, R.E. & Cotta, M.A. 2010. Production of butanol (a biofuel) from agricultural residues: Part I–use of barley straw hydrolysate. Biomass and Bioenergy 34(4): 559-565.

Rizzo, L., Della Sala, A., Fiorentino, A. & Puma, G.L. 2014. Disinfection of urban wastewater by solar driven and UV lamp-TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain. Water Research 53: 145-152.

Shavandi, M.A., Haddadian, Z., Ismail, M.H.S., Abdullah, N. & Abidin, Z.Z. 2012. Removal of Fe (III), Mn (II) and Zn (II) from palm oil mill effluent (POME) by natural zeolite. Journal of the Taiwan Institute of Chemical Engineers 43(5): 750-759.

Verla, A.W., Adowei, P. & Verla, E.N. 2014. Physicochemical and microbiological characteristic of palm oil mill effluent (Pome) in Nguru: Aboh Mbaise, Eastern Nigeria. Acta Chimica and Pharmaceutica Indica 4(3): 119-125.

Vital, M., Stucki, D., Egli, T. & Hammes, F. 2010. Evaluating the growth potential of pathogenic bacteria in water. Applied and Environmental Microbiology 76(19): 6477-6484.

Yang, J., Zhang, L., Fukuzaki, Y., Hira, D. & Furukawa, K. 2010. High-rate nitrogen removal by the Anammox process with a sufficient inorganic carbon source. Bioresource Technology 101(24): 9471-9478.

Yang, X., Wang, S. & Zhou, L. 2012. Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresource Technology 104: 65-72.

Yapsakli, K., Aliyazicioglu, C. & Mertoglu, B. 2011. Identification and quantitative evaluation of nitrogen-converting organisms in a full-scale leachate treatment plant. Journal of Environmental Management 92: 714-723.

Zafar, S. 2018. Properties and Uses of POME. https://www. bioenergyconsult.com/tag/what-is-pome/. Accessed on April 14 2018.

Zhao, Y., Huang, J., Zhao, H. & Yang, H. 2013. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates. Bioresource Technology 143: 439-446.

 

*Pengarang untuk surat-menyurat; email: ywyan@must.edu.my

 

 

 

 

 

sebelumnya