Sains Malaysiana 48(4)(2019): 893–899

http://dx.doi.org/10.17576/jsm-2019-4804-22

 

Outlier Detection in 2 × 2 Crossover Design using Bayesian Framework

(Pengesanan Titik Terpencil dalam 2 × 2 Reka Bentuk Pindah Silang Menggunakan Rangka Kerja Bayesian)

 

F.P. LIM1,2, I.B. MOHAMED1*, A.I.N. IBRAHIM1, S.L. GOH3 & N.A. MOHAMED @ A. RAHMAN1

 

1Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Faculty of Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Sport Medicine Clinic, University of Malaya Medical Centre, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 23 April 2016/Diterima: 20 Januari 2019

 

ABSTRACT

We consider the problem of outlier detection method in 2×2 crossover design via Bayesian framework. We study the problem of outlier detection in bivariate data fitted using generalized linear model in Bayesian framework used by Nawama. We adapt their work into a 2×2 crossover design. In Bayesian framework, we assume that the random subject effect and the errors to be generated from normal distributions. However, the outlying subjects come from normal distribution with different variance. Due to the complexity of the resulting joint posterior distribution, we obtain the information on the posterior distribution from samples by using Markov Chain Monte Carlo sampling. We use two real data sets to illustrate the implementation of the method.

 

Keywords: Bayesian; crossover design; Markov Chain Monte Carlo; outlier

 

ABSTRAK

Kami mengambil kira masalah kaedah pengesanan nilai terpencil dalam kajian pindah silang 2×2 melalui rangka kerja Bayesian. Kami mengkaji masalah pengesanan titik tersisih bagi data bivariat yang disuaikan dengan model linear teritlak dalam rangka kerja Bayesian yang digunakan oleh Nawama. Kami menyesuaikan kerja-kerja tersebut ke dalam 2×2 kajian pindah silang. Dalam rangka kerja Bayesian, kami menganggap bahawa kesan subjek rawak dan ralat akan dijana daripada taburan normal. Walau bagaimanapun, nilai terpencil pula tertabur normal dengan varians yang berbeza. Disebabkan taburan posterior tercantum yang kompleks, kami mendapatkan maklumat mengenai taburan posterior daripada sampel yang dijana melalui pensampelan Markov Chain Monte Carlo (MCMC). Kami menggunakan dua set data sebenar untuk menggambarkan pelaksanaan kaedah tersebut.

 

Kata kunci: Bayesian; Markov Chain Monte Carlo; reka bentuk pindah silang; titik terpencil

RUJUKAN

Aggarwal, C.C. 2013. Outlier Analysis. New York: Springer.

Chen, Y.I. & Huang, C.S. 2015. Bayesian bioequivalence test based on skew normal model for bioavailability measure. Journal of the Chinese Statistical Association 53: 38-54.

Chow, S.C. & Tse, S.K. 1990. Outliers detection in bioavailability/ bioequivalence studies. Statistics in Medicine 9: 549-558.

Clayton, D. & Leslie, A. 1981. The bioavailability of erythromycin stearate versus enteric-coated erythromycin based when taken immediately before and after food. Journal of International Medical Research 9: 470-477.

Enachescu, D. & Enachescu, C. 2009. A new approach for outlying records in bioequivalence trials. Paper presented at the XIII International Conference Applied Stochastic Models and Data Analysis 13: 250-257.

Hawkins, D.M. 1980. Identification of Outliers. London: Chapman and Hall.

Jones, B. & Kenward, M.G. 1989. Design and Analysis of Cross- Over Trials. 1st edition. London: Chapman and Hall.

Karasoy, D. & Daghan, G. 2012. Examination of outliers in bioequivalence studies. Bulletin of Clinical Psychopharmacology 22(4): 307-312.

Lim, F.P., Mohamed, I., Daud, N. & Goh, S.L. 2016. Comparison of outlier detection methods in standard 2×2 crossover design. Sains Malaysiana 45(3): 499-506.

Liu, J.P. & Weng, C.S. 1991. Detection of outlying data in bioavailability/bioequivalence studies. Statistics in Medicine 10: 1375-1389.

Nawama, M., Ibrahim, A.I.N., Mohamed, I., Yahya, M.S. & Taib, N.A. 2015. Outlier detection using generalized linear model in Malaysian breast cancer data. Sains Malaysiana 44(10): 1417-1422.

Ramsay, T. & Elkum, N. 2005. A comparison of four different methods for outlier detection in bioequivalence studies. Journal of Biopharmaceutical Statistics 15(1): 43-52.

Singh, R., Namdev, K.K. & Chilkoti, D. 2014. An assessment on handling of outlier subjects in bioequivalence study - A review. Journal of Pharmaceutical and Bioanalytical Science 3(1): 14-20.

Tierney, L. 1994. Markov chains for exploring posterior distributions. The Annals of Statistics 22(4): 1701-1728.

Unnikrishnan, N.K. 2010. Bayesian analysis for outliers in survey sampling. Computational Statistics and Data Analysis 54: 1962-1974.

Wang, W. & Chow, S.C. 2003. Examining outlying subjects and outlying records in bioequivalence trials. Journal of Biopharmaceutical Statistics 13(1): 43-56.

Weiner, D. 1989. Bioavailability. Notes on the Training Course for New Clinical Statisticians sponsored by the Biostatistics Subsections of Pharmaceutical Manufacture Association, March, 1989, Washington, DC.

 

*Pengarang untuk surat-menyurat; email: imohamed@um.edu.my

 

 

 

sebelumnya