Sains Malaysiana 48(5)(2019):
1129–1135
http://dx.doi.org/10.17576/jsm-2019-4805-22
Peningkatan Kecekapan
Pemisahan Air Menggunakan
g-C3N4 yang Disinar
Gama
(Improvement of Water Splitting Efficiency
using Gamma Irradiated g-C3N4)
NURUL AIDA
MOHAMED1,
JAVAD
SAFAEI1,
AZNAN
FAZLI
ISMAIL2,3,
MOHAMAD
FIRDAUS
MOHAMAD
NOH1,
MOHD
FAIRUZ
SOH1,
MOHD
ADIB
IBRAHIM1,
NORASIKIN
AHMAD
LUDIN1
& MOHD ASRI MAT
TERIDI1*
1Solar Energy Research Institute (SERI),
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Nuclear Science Program, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Center for Frontier Science, Faculty
of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan: 3 Julai
2018/Diterima: 13 Mac 2019
ABSTRAK
Dalam kajian ini, kesan
sinar gama
ke atas bahan
semikonduktor g-C3N4 kGy (0.1 kGy dan
0.5) dibincangkan dan
dibandingkan dengan sampel yang tidak disinar untuk melihat
perbezaanya. Bahan
g-C3N4 disintesis dari urea melalui proses pempolimeran haba pada suhu
520°C. Struktur dan
morfologi g-C3N4 dianalisis dengan menggunakan pembelauan Sinar- X (XRD), spektroskopi
transformasi Fourier inframerah
(FT-IR),
mikroskop pengimbas
elektron pancaran medan dengan spektroskopi
tenaga sinar-X
(FESEM-EDX),
spektroskopi cahaya
nampak - ultraungu (UV-Vis)
dan ketumpatan
arus (LSV). Sinar
gama telah mengubah
struktur ikatan
g-C3N4 dan mengurangkan sela jalur iaitu
daripada 2.80 eV kepada
2.72 eV. Di samping itu,
sampel g-C3N4 yang
disinar pada
0.1 kGy menghasilkan prestasi lima kali ganda lebih tinggi iaitu
daripada 3.59 μAcm-2 kepada 14.2 μAcm-2 pada 1.23 V lawan Ag/AgCl dalam larutan
elektrolit 0.5 M Na2SO4 (pH7).
Kesimpulannya, keputusan
kajian menunjukkan bahan semikonduktor yang dirawat dengan sinar gama berpotensi
untuk meningkatkan
fotoelektrokimia (PEC) pemisahan
air.
Kata kunci:
g-C3N4, pemisahan
air; sela jalur
tenaga; sinar gama
ABSTRACT
In this study, the effect of
gamma radiation on g-C3N4 semiconductor
material (0.1 and 0.5 kGy) was discussed
and compared to the non-irradiated sample in order to investigate
the difference. The g-C3N4 material
was synthesised from urea by thermal
polymerization at the temperature of 520°C. The structure and
morphology of the g-C3N4 were
analysed by X-ray diffractometer (XRD),
Fourier transform infrared spectroscopy (FTIR), field emission scanning
electron microscope with energy dispersive X-ray spectroscopy
(FESEM-EDX),
ultraviolet- visible (UV-Vis), profilometer
and photocurrent density (LSV). The finding indicates that gamma
radiation has changed the bonding structure of the g-C3N4 and
reduces the optical band gap energy from 2.80 to 2.72 eV. In addition,
the irradiated g-C3N4 sample at 0.1 kGy
has five times better performance which increases from 3.59 μAcm-2
to 14.2 μAcm-2 at 1.23 V versus Ag/AgCl in
0.5 M Na2SO4 electrolyte solution (pH7). As a conclusion,
this study shows that the treated semiconductor material with
gamma-ray potentially to increase the photoelectrochemical
efficiency.
Keywords: g-C3N4;
energy band gap; gamma radiation; water splitting
RUJUKAN
Ahmad,
S., Khan, M.S., Asokan, K. & Zulfequar,
M. 2015. Effect of gamma irradiation on structural and optical
properties of thin films of a Cd5Se95-xZnx.
Int. J. Thin. Fil. Sci. Tec. 4(2): 103-109.
Al-Hamdani, N.A., Al-Alawy, R.D. &
Saba, J.H. 2014. Effect of gamma irradiation on the structural
and optical properties of ZnO thin films.
IOSR Journal of Computer Engineering (IOSR-JCE) 16(1):
11-16.
Alarcón, J., Ponce, S., Paraguay-Delgado, F. &
Rodríguez, J. 2011. Effect of γ-irradiation on the growth
of ZnO nanorod films for photocatalytic
disinfection of contaminated water. Journal of Colloid and
Interface Science 364(1): 49-55.
Arshak, K. & Kerostynska,
O. 2003. Gamma irradiation induced changes in the electrical and
optical properties of tellurium dioxide thin films. IEEE Sensors
Journal 3(6): 717-721.
Chang,
Y., Guo, Q., Zhang, J., Chen, L., Long,
Y. & Wan, F. 2013. Irradiation effects on nanocrystalline
material. Front. Mater. Sci. 7(2): 143-155.
Dong,
F., Zhao, Z., Xiong, T., Ni, Z., Zhang,
W., Sun, Y. & Ho, W. 2013. In situ construction of
G-C3N4
/g-C3N4
metal-free heterojunction for enhanced visible-light
photocatalysis. ACS Applied Materials
& Interfaces 5(21): 11392-11401.
Fujishima, A. & Honda, K. 1972. Electrochemical
photolysis of water at a semiconductor electrode. Nature 238:
37-38.
Huang,
S., Jin, Y. & Jia,
M. 2013. Electrochimica acta
preparation of graphene/Co3O4 Composites
by hydrothermal method and their electrochemical properties. Electrochimica Acta 95:
139-145.
Jin, A., Jia, Y., Chen, C., Liu, X., Jiang,
J., Chen, X. & Zhang, Z. 2017. Efficient photocatalytic hydrogen
evolution on band structure tuned polytriazine/heptazine based carbon nitride heterojunctions with ordered
needle-like morphology achieved by an in situ molten salt
method. Journal of Physical Chemistry C 121(39): 21497-21509.
Li, Q.,
He, Y. & Peng, R. 2013. Graphitic carbon nitride (G-C3N4)
as a metal-free catalyst for thermal decomposition of ammonium
perchlorate. RSC Adv. 5(31): 24507-24512.
Liu, J., Zhang, T., Wang,
Z., Dawson, G. & Chen, W. 2011. Simple pyrolysis of urea into
graphitic carbon nitride with recyclable adsorption and photocatalytic
activity. Journal of Materials Chemistry 21(38): 14398-14401.
Mohd-Nasir, S.N.F., Ebadi,
M., Sagu, J.S., Sulaiman,
M.Y., Ludin, N.A., Ibrahim, M.A. &
Teridi, M.A.M. 2015. Influence of ethylene glycol on efficient
photoelectrochemical activity of BiVO4
photoanode via AACVD. Physica
Status Solidi (A) Applications and Materials Science 212(12):
2910-2914.
Mohamed, N.A., Safaei,
J., Aznan, F.I., Mohamad Noh, M.F.,
Soh, M.F., Ibrahim, M.A., Ahmad Ludin,
N. & Mat Teridi, M.A. 2018. Efficient
photoelectrochemical performance of gamma irradiated g-C3N4
and its g-C3N4 @BiVO4 heterojunction for solar water splitting.
J. Phys. Chem. C. 123(14): 9013-9026.
Mohil, M. & Kumar, G.A. 2013. Gamma
radiation induced effects in TeO2 thin films. Journal of Nano
and Electronic Physics 5(2): 5-7.
Peng, D., Wang, H., Yu, K., Chang,
Y., Ma, X. & Dong, S. 2016. Photochemical preparation of the
ternary composite CdS/Au/g-C3N4 with
enhanced visible light photocatalytic performance and its microstructure.
RSC Advances 6(81): 77760-77767.
Riyadh, C.H.A., Hussein, H.F. &
Al-Fregi, A.A. 2012. The effects of
gamma irradiation on the absorption spectra and optical energy
gap of selenium dioxide thin films. Science Journal of Physics
2012(2): 1-4.
Safaei, J., Ullah,
H., Mohamed, N.A., Noh, M.F.M., Soh,
M.F., Tahir, A.A., Ludin, N.A., Ibrahim,
M.A., Wan Isahak, W.N.R. & Mat Teridi,
M.A. 2018. Enhanced photoelectrochemical
performance of Z-scheme g-C3N4/BiVO4 photocatalyst.
Applied Catalysis B: Environmental 234: 296-310.
Wang, X., Blechert,
S. & Antonietti, M. 2012. Polymeric
graphitic carbon nitride for heterogeneous photocatalysis.
ACS Catalysis 2: 1596-1606.
Yang, P., Zhao, J., Qiao, W., Li, L. & Zhu, Z. 2015. Ammonia-induced robust
photocatalytic hydrogen evolution of graphitic carbon nitride.
Nanoscale 7(45): 18887-18890.
Yu, J., Wang, S., Cheng, B., Lin,
Z. & Huang, F. 2013. Noble metal-free Ni(OH)2–g-C3N4 composite
photocatalyst with enhanced visible-light photocatalytic H2
production activity. Catalysis Science & Technology 3(7):
1782-1789.
Zhang, G., Zhang, J., Zhang, M. &
Wang, X. 2012. Polycondensation of thiourea into carbon nitride semiconductors as visible light
photocatalysts. Journal of Materials
Chemistry 22(16): 8083-8091.
Zhang, J., Chen, X., Takanabe, K., Maeda, K., Domen,
K., Epping, J.D., Fu, X., Antonieta,
M. & Wang, X. 2010. Synthesis of a carbon nitride structure
for visible-light catalysis by copolymerization. Angewandte
Chemie-International Edition 49(2): 441-444.
Zhang, L., Jing, D., She, X., Liu,
H., Yang, D., Lu, Y., Li, J., Zheng, Z. & Guo,
L. 2014. Heterojunctions in G-C3N4/ TiO2 (B) nanofibres
with exposed (001) plane and enhanced visible-light photoactivity.
J. Mater. Chem. A 2(7): 2071- 2078.
Zhong, D.K.N. 2012. Solar water oxidation
by composite cobalt-based catalyst/oxide semiconductor photoanode. Thesis Dr. Fal. University
Washington (tidak diterbitkan).
*Pengarang
untuk surat-menyurat;
email: asri@ukm.edu.my