Sains Malaysiana 48(5)(2019): 937–944
http://dx.doi.org/10.17576/jsm-2019-4805-02
Effects of Silver Nanoparticle Exposure
on Germination and Early Growth of Pinus
sylvestris and Alnus
subcordata
(Kesan Pendedahan Nanozarah Perak kepada Percambahan dan Pertumbuhan Awal Pinus sylvestris dan Alnus subcordata)
VILMA BAYRAMZADEH1*,
MARYAM GHADIRI2
& MOHAMMAD HOSSEIN DAVOODI3
1Department of Wood
Sciences Faculty of Agricultural Sciences and Natural Resources,
Karaj Branch, Islamic Azad University, Karaj, Iran
2M.Sc. Department
of Soil Sciences, Faculty of Agricultural Sciences and Natural
Resources, Karaj Branch, Islamic Azad University, Karaj, Iran
3Soil and Water
Research Institute, Karaj, Iran
Diserahkan: 9 Jun 2018/Diterima: 12 Mac 2019
ABSTRACT
The possible ecological toxicity
of silver nanoparticles (AgNP) was evaluated
based on germination and growth characteristics of Pinus sylvestris and Alnus
subcordata. Seeds were exposed to
different concentrations of AgNP in
soil (0, 10, 20, 40, 80 and 100 mg/kg) and aqueous suspension
(0, 10 and 20 mg/L). Then, seed germination percentage (GP%), speed of germination (S.G), seedling length (SL),
as well as fresh and dry weights (FW and DW)
were measured. The results showed that low concentration of AgNP
(under 80 mg/kg) could be used without detrimental effects on
the germination characteristics of P. sylvestris
in the soil. Nevertheless, inhibitory effect of AgNP
was observed at 10 mg/L for P. sylvestris
in aqueous suspension. The dissimilar results in soil and aqueous
suspension were due to the organic matters and clay minerals in
the soil. There was no significant difference (p<0.01)
among the treatments of A. subcordata, not only in soil but also in the aqueous suspension.
Keywords: Aqueous suspension;
inhibitory effect; seed germination; silver nanoparticles; soil;
woody plants
ABSTRAK
Ketoksikan ekologi nanozarah
perak (AgNP)
dinilai berdasarkan ciri-ciri percambahan dan pertumbuhan Pinus sylvestris dan
Alnus subcordata. Benih
didedahkan kepada kepekatan berbeza AgNP dalam tanah
(0, 10, 20, 40, 80 dan 100 mg/kg) dan
gantungan akues
(0, 10 dan 20 mg/L). Kemudian,
peratusan percambahan
biji benih (GP%),
kelajuan percambahan
(S.G), panjang semaian
(SL),
serta berat
kering dan segar
(FW
dan DW)
diukur. Hasil kajian menunjukkan
bahawa kepekatan
rendah AgNP (di bawah 80 mg/kg) boleh digunakan tanpa kesan-kesan yang memudaratkan terhadap ciri-ciri percambahan P. sylvestris dalam tanah. Walau bagaimanapun, kesan
rencatan AgNP
diperhatikan pada 10 mg/L bagi P. sylvestris
pada penggantungan
akues. Keputusan yang berbeza dalam
tanah dan
penggantungan akues adalah disebabkan oleh bahan organik
dan mineral tanah
liat dalam tanah.
Tiada
perbezaan yang signifikan (p<0.01) bagi rawatan A. subcordata, di dalam tanah mahupun di dalam penggantungan akues.
Kata kunci: Kesan
rencatan; penggantungan
akues; percambahan benih; nanozarah perak; tanah; tumbuhan
berkayu
RUJUKAN
Association of Official Seed Analysts. 1970.
Rules for testing seed. Association Seed Analysts 60: 1-116.
Bayramzadeh, V.,
Funada, R. & Kubo, T. 2008. Relationships between vessel element anatomy and physiological as
well as morphological traits of leaves in Fagus crenata
seedlings originating from different provenances. Trees
22(2): 217-224.
Brant, J.A., Labille, J., Bottero, J.Y. & Wiesner, M.R.
2007. Nanoparticle transport, aggregation and deposition.
In Environmental Nanotechnology, Applications and Impacts of
Nanomaterials, edited by Wiesner,
M.R. & Bottero, J.Y. New York: McGraw. pp.
231-294.
Christian, P., von der Kammer, F., Baalousha, M. & Hofmann, T.H. 2008. Nanoparticles
structure, properties, preparation and behavior in environmental
media. Ecotoxicology 17(5): 326-343.
El-Temsah, Y.S. & Joner, E. 2010. Impact of
Fe and Ag nanoparticles on seed germination and differences in
bioavailability during exposure in aqueous suspension and soil.
Environmental Toxicology 27(1): 42-49.
EPA. 2007. Nanotechnology White Paper. Washington: U.S. Environmental
protection agency report EPA 100/B-07/001.
Gee,
G.W. & Bauder, J.W. 1986. Particle
size analysis. In Methods of Soil
Analysis, edited by Klute, A. Wisconsin:
Soil Science Society of America, Madison. pp. 383-411.
Gharachorlou, A.,
Kiadalivi, H., Adeli,
E. & Alijanpoor, A. 2010. Studying
quantity and quality of coniferous species in Arasbaran
Forests (Case study: Heresar and Kalaleh
Regions). World Applied Sciences Journal 8: 334-338.
Handy, R.D. & Shaw, B.J. 2007. Toxic
effects of nanoparticles and nanomaterials: Implications for public
health, risk assessment and the public perception of nanotechnology.
Health, Risk and Society 9(2): 125-144.
Hwang,
M.G., Katayama, H. & Ohgaki, S.
2007. Inactivation of Legionella pneumophila
and Pseudomonas aeruginosa: Evaluation of the bactericidal
ability of silver actions. Water Research 41(18): 4097-4104.
International Seed Testing Association. 1976.
International rules for seed testing 1976. Seed Science and
Technology 4: 1-177.
Jiang, H., Li, M., Chang, F., Li, W. & Yin, L. 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity
to Spirodela polyrrhiza.
Environmental Toxicology and Chemistry 31(8): 1880-1996.
Klaine,
S.J., Alvarez, P.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. & Lead, J.R. 2008. Nanomaterials
in the environment: Behaviour, fate,
bioavailability and effects. Environmental Toxicology and Chemistry
27(9): 1825-1851.
Kumari, M.,
Mukherjee, A. & Chandrasekaran,
N. 2009. Genotoxicity of silver nanoparticle in Allium cepa. Science of the Total Environment 407(19):
5243-5246.
Lee,
W.M., Kwak, J.I. & An,
Y.J. 2012. Effect of silver nanoparticles in crop plants Phaseolus
radiates and Sorghum bicolour:
Media effect on phytotoxicity. Chemosphere
86(5): 491-499.
Limbach, L.K.,
Wick, P., Manser, P., Grass, R.N., Bruinink, A. & Stark, W.J. 2007. Exposure
of engineered nanoparticles to human lung epithelial cells: Influence
of chemical composition and catalytic activity on oxidative stress.
Environmental Science and Technology 41(11): 4158-4163.
Lin, D. & Xing, B. 2007. Phytotoxicity
of nanoparticles: Inhibition of seed germination and root growth.
Environmental Pollution 150(2): 243-250.
Lombi, E., Zhao, F.J., Zhan, G., Sun, B., Fitz, W., Zhang, H. & McGrath,
S.P. 2002. In situ fixation of metals in soils using bauxite
residue: Chemical assessment. Environmental Pollution 118(3):
435-443.
Luoma, N.S. 2008. Silver nanotechnologies and the environment: Old problems
or new challenges? Woodrow Wilson International Centre for Scholars:
Scholars Project on Emerging Nanotechnologies, Washington, DC.
p. 26.
Maguire,
J.O. 1962. Speed of germination-aid in selection and evaluation
for seedling emergence and vigour. Crop
Science 2(1): 176-177.
Maynard,
A.D., Aitken, R.J., Butz, T., Colvin,
V., Donaldson, K., Oberdörster, G.,
Philbert, M. A., Ryan, J., Seaton, A.,
Stone, V., Tinkle, S.S., Tran, L., Walker, N.J. & Warheit,
D.B. 2006. Safe handling of nano
technology. Nature 444(7117): 267-269.
Munzuroglu, O.
& Geckil, H. 2002. Effects of metals on seed germination, root elongation, and coleoptile
and hypocotyl growth in Triticum
aestivum and Cucumis
sativus. Arch Environmental
Contamination and Toxicology 43(2): 203- 213.
Navarro,
E., Boun, A., Behra,
R., Hartmann, N.B., Filser, J., Mioo,
A.O., Quigg, A., Santschi,
P.H. & Sigg, L. 2008. Environmental
behaviour and ecotoxicity
of engineered nanoparticles on algae, plants and fungi.
Ecotoxicology 17(5): 372-386.
Purcell, T.W. & Peter,
J.J. 1998. Sources of silver in the environmental.
Environmental Toxicology and Chemistry 17(4): 539-546.
Roberts, A.P.,
Mount, A.S., Seda, B., Souther,
J., Qiao, R., Lin, S., Ke,
P.C., Rao, A.M. & Klaines, J. 2007.
In vivo bio-modification of lipid-coated carbon nano-tubes by Daphnia magna. Environmental
Science and Technology 41(8): 3025-3029.
Richards, L.A.
1954. Diagnosis and improvement of saline and
alkali soils. Agronomy Journal 60: 65-86.
Roschewitz,
I., Gabriel, D., Tscharntke, T. &
Thies, C. 2005. The effects of landscape complexity on
arable weed diversity in organic and conventional farming. Journal
of Applied Ecology 42(5): 873-882.
Seeger,
E., Baun, A., Kastner,
M. & Trapp, S. 2009. Insignificant acute toxicity of
TiO2 nanoparticles to willow trees. Journal
of Soils and Sediments 9(1): 46-53.
Stampoulis,
D., Sinha, S.K. & White, J.C. 2009. Assay-dependent
phytotoxicity of nanoparticles to plant.
Environmental Science and Technology 43(24): 9473-9479.
Steven,
H.M. & Carlisle, A. 1959. The Native Pinewoods
of Scotland. Edinburgh: Oliver and Boyd Publications.
p. 368.
Tabari,
M., Salehi, A. & Ali-Arab, A.R.
2008. Effects of waste
water application on heavy metals (Mn,
Fe, Cr and Cd) contamination in a black locust stand in semi-arid
zone of Iran. Research Journal of Environmental Sciences 7(4):
382-388.
Tabari,
M., Rostamabadi, A. & Salehi,
A. 2011.
Comparison of plant diversity and stand characteristics
in Alnus subcordata C.A.
Mey and Taxodium
distichum (L.) L.C. Rich. Ecologia
Balkanica 3(2): 15-24.
Walkley,
A. & Black, I.E. 1934. An examination of the
degtjareff method for three determining
soil organic mother and a proposed modification of the chromic
acid titration method. Soil Science 37(1): 29-38.
Wang, X.D., Sun,
C., Gao, S.X., Wang, L.S. & Han,
S.K. 2001. Validation of germination rate and root elongation as indicator to
assess phytotoxicity with Cucumis
sativus. Chemosphere 44(8):
1711-1721.
Wiesner, M.R., Lowry,
G.V., Alvarez, P., Dionysiou, D. &
Biswas, P. 2006. Assessing the risks of manufactured
nanomaterials. Environmental Science and Technology
40(14): 4336-4345.
Yin,
L., Cheng, Y., Espinasse, B., Colman,
B.P., Auffan, M. & Wiesner, M. 2011.
More than the ions: The effects of silver nanoparticles on Lolium
multiflorum. Environmental Science
and Technology 45(6): 2360-2367.
*Pengarang untuk surat-menyurat; email: vbayramzadeh@gmail.com