Sains Malaysiana 48(7)(2019): 1367–1381
http://dx.doi.org/10.17576/jsm-2019-4807-06
Aplikasi Sistem Maklumat
Geografi (GIS) dan Analisis Diskriminan dalam Pemodelan Kejadian Kegagalan
Cerun di Pulau Pinang, Malaysia
(Application of Geographical
Information Systems (GIS) and Discriminant Analysis in Modelling
Slope Failure Incidence in Pulau Pinang,
Malaysia)
NURIAH ABD MAJID1*
& RUSLAN RAINIS2
1Institut Alam Sekitar
dan Pembangunan (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Bahagian Geografi, Pusat
Pengajian Ilmu Kemanusiaan, Universiti Sains Malaysia, 11800 USM Penang, Pulau
Pinang, Malaysia
Diserahkan:
28 September 2018/Diterima: 22 April 2019
ABSTRAK
Kegagalan cerun merupakan
suatu fenomena disebabkan hujan yang sering berlaku di kawasan tropika
seperti Malaysia. Kertas ini menghuraikan penggunaan Sistem Maklumat Geografi (GIS)
dan Analisis
Diskriminan untuk memodelkan ciri-ciri
fizikal kegagalan cerun serta hubung kait statistik kejadian kegagalan
cerun dengan parameter fizikal yang menyumbang kepada kejadian kegagalan
cerun di Pulau Pinang. Analisis diskriminan adalah satu kaedah analisis
yang boleh digunakan untuk mendiskriminasikan sesuatu kumpulan kegagalan
cerun berdasarkan parameter tertentu. Tujuan utama analisis ini
dijalankan adalah bagi memahami faktor yang mempengaruhi perbezaan
antara kumpulan kegagalan cerun dan cerun stabil (tiada kegagalan
cerun), seterusnya membuat ramalan tentang kemungkinan terjadi sesuatu
kegagalan cerun. Oleh yang demikian, satu kombinasi linear pemboleh
ubah bebas telah dibentuk dan digunakan sebagai asas dalam mengkelaskan
kes kegagalan cerun tertentu. Kajian ini menggunakan sepuluh pemboleh
ubah iaitu jarak ke jalan, purata hujan tahunan, litologi batuan,
ketinggian topografi, kecuraman cerun, siri tanih, aspek cerun,
jarak ke sungai, jenis guna tanah dan lineamen. Model yang terhasil
didapati berjaya meramal 92.5% daripada kejadian kegagalan cerun
sebenar. Model yang dibentuk kemudiannya telah dinilai menggunakan
30% daripada sampel kejadian sebenar dan menghasilkan ketepatan
sebanyak 91.24%.
Kata kunci: Analisis
diskriminan; kegagalan cerun; pemodelan ruangan; Pulau Pinang; Sistem Maklumat Geografi
ABSTRACT
Slope failure is a phenomenon
due to frequent rainfall that occurs in tropical areas such as Malaysia.
This paper describes the use of Geographical Information Systems
(GIS)
and Discriminant Analysis to model the physical features of slope
failure and the statistical association between slope failure events
with physical parameters that contribute to the incidence of slope
failure in Pulau Pinang. Discriminant analysis is an analysis method
that can be used to discriminate against a set of slope failures
based on certain criteria. The main purpose of this analysis were
to understand the factors that affect the difference between the
group of slope failure and subsequently making predictions about
a possible slope failure. Therefore, a linear combination of independent
variables has been formed and used as a basis for classifying certain
slope failure cases. The study used ten variables: distance to the
road, average annual rainfall, lithology, topography height, slope
gradient, soil series, slope aspect, distance to river, landuse
type and lineament. The resulting model was able to predict 92.5%
of actual slope failure events. The model was validated using 30%
of the actual incident samples and found 91.24% accuracy.
Keywords: Discriminant analysis; Geographical Information System;
Pulau Pinang; slope failure; spatial modeling
RUJUKAN
Akgul, A. & Bulut, F. 2007. GIS-based landslide susceptibility
for Arsin-Yomra (Trabzon, North Turkey) region. Environ. Geol. 51(8):
1377-1387.
Akgun, A., Dag, S. & Bulut, F. 2008. Landslide susceptibility
mapping for a landslide-prone area (Findikli, NE of Turkey) by
likelihood-frequency ratio and weighted linear combination models. Environmental
Geology 54(6): 1127- 1143.
Aleotti, P. & Chowdhury, R. 1999. Landslide hazard assessment:
Summary review and new perspectives. Bull. Eng. Geol. Env. 58(1): 21-44.
Althuwaynee, O.F. & Pradhan, B. 2017. Semi-quantitative
landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur
City, Geomatics, Natural Hazards and Risk 8(2): 706-732. DOI:
10.1080/19475705.2016.1255670.
Atkinson, P.M. & Massari, R. 1998. Generalized linear modeling
of susceptibility to landsliding in the central Apennines, Italy. Comput.
Geosci. 24(4): 373-385.
Ayalew, L. & Yamagishi, H. 2005. The application of GIS-based
logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko
Mountains, Central Japan. Geomorphology 65(1): 15-31.
Ayele, S., Raghuvanshi, T.K. & Kala, P.M. 2014. Application of
remote sensing and GIS for landslide disaster management: A case from Abay
Gorge, Gohatsion-Dejen section, Ethiopia. In Landscape Ecology and Water
Management. Tokyo: Springer. hlm. 15-32.
Baecher, G. & Christian, J. 2003. Reliability and
Statistics in Geotechnical Engineering. 1st ed. Chichester: John Wiley.
Baeza, C. & Corominas, J. 2001. Assessment of shallow
landslide susceptibility by means of multivariate statistical techniques. Earth
Surface Process & Landform 26(12): 1251-1263.
Bates, R.L. & Jackson, J.A. 1987. Glossary of Geology.
Alexandria, Virginia: American Geological Institute. p. 788.
Ben Slimane, A., Raclot, D., Evrard, O., Sanaa, M., Lefèvre, I.
& Le Bissonnais, Y. 2015. Relative contribution of rill/ interrill and
gully/channel erosion to small reservoir siltation in mediterranean
environments. Land Degradation & Development 27(3): 785-797. DOI:
10.1002/ldr.2387.
Beven, K.J. & Kirkby, M.J. 1979. A physically based, variable
contributing area model of basin hydrology. Hydrological Sciences Bulletin 24:
43-69.
Borga, M., Tonelli, F., dalla Fontana, G. & Cazorzi, F. 2005.
Evaluating the influence of forest roads on shallow landsliding. Ecol. Model.
187: 85-98.
Bromley, D.W. 1971. The use of discriminant analysis in selecting
rural development strategies. American Journal of Agricultural Economics 53(2):
319-322.
Budimir, M.E.A.,
Atkinson, P.M. & Lewis, H.G. 2015. A systematic review of landslide
probability mapping using logistic regression. Landslides 12(3):
419-436.
Bui, D.T., Pradhan, B.,
Lofman, O., Revhaug, I. & Dick, O.B. 2012. Landslide susceptibility assessment
in the Hoa Binh Province of Vietnam: A comparison of the Levenberg Marquardt
and Bayesian regularized neural networks. Geomorphology doi:10.1016/
j.geomorph.
Caniani,
D., Pascale, S., Sdao, F. & Sole, A. 2007. Neural networks and landslide
susceptibility: A case study of the urban area of potenza. Natural Hazards 45:
55-72.
Carrara,
A., Cardinali, M., Guzzetti, F. & Reichenbach, P. 1995. GIS technology in
mapping landslide hazard. Geographical Information Systems in Assessing
Natural Hazards. Netherlands: Springer. pp. 135-175.
Carrara,
A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V. & Reichenbach, P.
1991. GIS techniques and statistical models in evaluating landslide hazard. Earth
Surface Processes and Landforms 16(5): 427-445.
Carro,
M., de Amicis, M., Luzi, L. & Marzorati, S. 2003. The application of
predictive modeling techniques to landslides induced by earthquakes, the case
study of the 26 September 1997 Umbria-Marche Earthquake (Italy). Eng. Geol. 69:
139-159.
Cevik,
E. & Topal, T. 2003. GIS-based landslide susceptibility mapping for a
problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental
Geology (44): 949-962.
Chapin,
F.S. & Kaiser, E.J. 1979. Urban Land Use Planning. Urbana:
University of Illinois Press.
Chen,
H., Lin, G.W., Lu, M.H., Shih, T.Y., Horng, M.J. & Wu, S.J. 2011. Effects
of topography, lithology, rainfall and earthquake on landslide and sediment
discharge in mountain catchments of Southeastern Taiwan. Geomorphology 133:
132-142.
Choi,
J., Oh, H.J., Won, J.S. & Lee, S. 2010. Validation of an artificial neural
network model for landslide susceptibility mapping. Environmental Earth
Sciences 60(3): 473-483. https://doi.org/10.1007/s12665-009-0188-0.
Chung,
C.J.F., Fabbri, A.G. & Van Westen, C.J. 1995. Multivariate regression
analysis for landslide hazard zonation. Geographical Information Systems in
Assessing Natural Hazards. Netherlands: Springer. pp. 107-133.
Clerici,
A., Perego, S., Tellini, C. & Vescovi, P. 2002. A procedure for landslide
susceptibility zonation by the conditional analysis method. Geomorphology 48(4):
349-364.
Conforti,
M., Aucelli, P.P., Robustelli, G. & Scarciglia, F. 2011. Geomorphology and
GIS analysis for mapping gully erosion susceptibility in the Turbolo stream
catchment (northern Calabria, Italy). Nat. Hazards. 56(3) 881-898.
Dahal,
R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S. & Paudyal, P.
2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser
Himalaya of Nepal based on weight of evidence. Geomorphology 102:
496-510.
Dai,
F.C. & Lee, C.F. 2002. Landslide characteristics and slope instability
modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3):
213-228.
Dai,
F.C. & Lee, C.F. 2001. Frequency volume relation and prediction of
rainfall-induced landslides. Eng. Geol. 59(3- 4): 253-266.
Dong,
J.J., Tsao, C.C., Yang, C.M., Wu, W.J., Lee, C.T., Lin, M.L., Zhang, W.F., Pei,
X.J., Wang, G.H. & Huang, R.Q. 2017. The geometric characteristics and
initiation mechanisms of the earthquake-triggered Daguangbao landslide. In Geotechnical
Hazards from Large Earthquakes and Heavy Rainfalls, edited by Hazarika, H.,
Kazama, M. & Lee, W. Tokyo: Springer. hlm. 203-213.
Dragicevic,
S., Lai, T. & Balram, S. 2015. GIS-based multicriteria evaluation with
multiscale analysis to characterize urban landslide susceptibility in data-scarce
environments. Habitat International 45: 114-125.
Ercanoglu,
M. & Gokceoglu, C. 2002. Assessment of landslide susceptibility for a
landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental
Geology 41(6): 720-730.
Fatimah
Shafinaz, A. 2005. Penggunaan sistem maklumat geografi untuk meramal keruntuhan
cerun di Pulau Pinang. Tesis Ijazah Sarjana Kejuruteraan Awam Universiti
Teknologi Malaysia (Tidak diterbitkan).
Field,
A. 2009. Discovering Statistics using SPSS. 3rd ed. Los Angeles: SAGE
Publications Ltd.
Frattini,
P., Crosta, G., Carrara, A. & Agliardi, F. 2008. Assessment of rockfall
susceptibility by integrating statistical and physically based approaches. Geomorphology 94: 419- 437.
Gerrard,
A.J. 1981. Soil and landforms: An integration of geomorphology and pedology.
Deparment of Geography, University of Birmigham (Unpublished).
Gessesse,
B., Bewket, W. & Brauning, A. 2015. Model-based characterization and
monitoring of runoff and soil erosion in response to land use/land cover
changes in the Modjo watershed, Ethiopia. Land Degrad. Dev. 26: 711-724.
doi: 10.1002/ldr.2276.
Gigovic,
L., Drobnjak, S. & Pamucar, D. 2019. The application of the hybrid GIS
spatial multi-criteria decision analysis best-worst methodology for landslide
susceptibility mapping. International Journal of Geo-Information (ISPRS) 8(79):
1-29.
Gokceoglu,
C., Sonmez, H. & Ercaglu, M. 2000. Discontinuity controlled probabilistic
slope failure risk maps of the Altindag (settlement) region in Turkey. Engineering
Geology 55: 227-296.
Gorsevski,
P.V., Gessler, P. & Foltz, R.B. 2000. Spatial prediction of landslide
hazard using discriminant analysis and GIS. GIS in the Rockies 2000
Conference and Workshop Applications for the 21st Century. Denver,
Colorado. September 25-27.
Guo,
C., Montgomery, D.R., Zhang, Y., Wang, K. & Yang, Z. 2015. Quantitative
assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan
Plateau, China. Geomorphology 248: 93-100.
Guo-liang,
D., Zhang, Y.S. & Iqbal, J. 2017. Landslide susceptibility mapping using an
integrated model of information value method and logistic regression in the
Bailongjiang watershed, Gansu Province, China. Journal of Mountain Science 14(2):
249-268. DOI: 10.1007/s11629- 016-4126-9.
Guzzetti,
F., Galli, M., Reichenbach, P., Ardizzone, F. & Cardinali, M. 2006.
Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural
Hazards and Earth System Sciences 6: 115-131.
Guzzetti,
F., Carrara, A., Cardinali, M. & Reichenbach, P. 1999. Landslide
evaluation: A review of current techniques and their application in a
multi-scale study, Central Italy. Geomorphology 31: 181-216.
Guzzetti,
F., Cardinali, M. & Reichhenbach, P. 1994. The AVI Project: A
bibliographical and archive inventory of landslides and floods in Italy. Environmental
Management 18(4): 623- 633.
Gupta, S.K., Shukla, D.P. &
Thakur, M. 2018. Selection of weightages for causative factors used in
preparation of landslide susceptibility zonation
(LSZ). Geomatics, Natural Hazards and Risk 9(1): 471-487.
Hair, J.F., Anderson, E.R., Tatham, R.L. & Black, W.C. 1992. Multivariate
Data Analysis with Reading. Edisi Ketiga. New York: Macmillan Publishing
Company.
Haregeweyn, N., Poesen, J., Verstraeten, G., Govers, G., Vente,
J., Nyssen, J., Deckers, J. & Moeyersons, J. 2013. Assessing the
performance of a spatially distributed soil erosion and sediment delivery model
(watem/sedem) in Northern Ethiopia. Land Degrad. Develop. 24: 188-204.
doi:10.1002/ ldr.1121.
Hong, H., Naghibi, S.A., Dashtpagerdi, M.M., Pourghasemi, H.R.
& Chen, W. 2017. A comparative assessment between linear and quadratic
discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence
models for forest fire susceptibility mapping in China. Arab. J.
Geosci. 10: 167.
Hong, H., Pourghasemi, H.R. & Pourtaghi, Z.S. 2016. Landslide
susceptibility assessment in Lianhua County (China): A comparison between a
random forest data mining technique and bivariate and multivariate statistical
models. Geomorphology 259: 105-118.
IBM. 2016. Discriminant Analysis. http://www.ibm.com/support/
knowledgecenter/SSLVMB_22.0.0/com.ibm.spss.statistics. help/spss/base/idh_disc.htm.
Ibrahim Komoo. 1989. Engineering Geology of Kuala Lumpur,
Malaysia. Proc. Int. Conf. Eng. Geology in Tropica Terrain. Kuala
Lumpur. hlm. 262-273.
Ibrahim Abdullah & Juhari Mat Akhir. 1990. Basic Dictionary
of Geological Terms. Bangi: Universiti Kebangsaan Malaysia.
Jaafari, A., Najari, A., Rezaeian, J., Sattarian, A. & Ghajar,
I. 2015. Planning road network in landslide-prone areas: A case study from the
Northern Forests of Iran. Land Use Policy 47: 198-208.
Jaafari, A., Najafi, A., Rezaeian, J. & Sattarian, A. 2014.
Modeling erosion and sediment delivery from unpaved roads in the north
mountainous forest of Iran. GEM - Int. J. Geomath. 6(2): 343-356.
Jabatan Perangkaan Malaysia. 2013. Maklumat Asas Negeri Pulau
Pinang. Jabatan Pemetaan Malaysia.
Kai, X., Qiang, G., Zhengwei, L., Jie, X., Yanshan, Q. &
Chunfang, K. 2015. Landslide susceptibility evaluation based on BPNN and GIS: A
Case of Guojiaba in The Three Gorges Reservoir Area. International Journal
of Geographical Information Science 29(7): 1111-1124.
Kanungo, D.P., Arora, M.K., Sarkar, S. & Gupta, R.P. 2006. A
comparative study of conventional, ANN black box, fuzzy and combined neural and
fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling
Himalayas. Engineering Geology 85: 347-366.
Kazmi, D., Qasim, S., Harahap, I.S.H., Baharom, S., Imran, M.
& Moin, S. 2016. A study on the contributing factors of major landslides in
Malaysia. Civil Engineering Journal 2(12): 669-678.
Klecka, W. 1980. Discriminant Analysis. California: Sage
Publication.
Klose, M., Gruber, D., Damn, B. & Gerold, G. 2014. Spatial
databases and GIS as a tools for regional landslide susceptibility modeling. Zeitschrift
für Geomorphologie 58(1): 1-36.
Komac, M. 2006. A landslide susceptibility model using the
analytical hierarchy process method and multivariate statistics in perialpine
Slovenia. Geomorphology 74(1): 17-28.
Kou, M., Jiao, J., Yin, Q., Wang, N., Wang, Z., Li, Y. & Cao,
B. 2016. Successional trajectory over 10 years of vegetation restoration of
abandoned slope croplands in the hill-gully region of the loess plateau. Land
Degradation & Development 27(4): 919-932.
Lamelas, M.T., Marinoni, O., Hoppe, A. & Riva, J. 2008. Doline
probability map using logistic regression and GIS technology in the central
Ebro Basin (Spain). Environ. Geol. 54(5): 963-977.
Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y. & Li, R.H. 2004.
Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang
watershed, Yunnan, China. Engineering Geology 76(1): 109-128.
Lee, S. & Pradhan, B. 2007. Landslide hazard mapping at
Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4: 33-41.
Lee, S. & Pradhan, B. 2006. Probabilistic landslide hazards
and risk mapping on Penang Island, Malaysia. Journal of Earth System Science 115(6): 661-672.
Lee, S. & Jasmi, A.T. 2005. Probabilistic landslide
susceptibility and factor effect analysis. Environ. Geol. 47: 982-990.
Lee, S. & Min, K. 2001. Statistical analysis of landslide
susceptibility at Yongin, Korea. Env. Geol. 40: 1095-1113.
Leoi, S., Chan, A. & Trisha, N 2018. Malaysia among countries
especially prone to landslides. The Star. 4 Dec.
Lin, H.M., Chang, S.K., Wu, J.H. & Juang, C.H. 2009. Neural
network-based model for assessing failure potential of highway slopes in the
Alishan, Taiwan Area: Pre- and post-earthquake investigation. Engineering
Geology 104(3-4): 280-289.
Lin, M.L., Lin, S.C. & Lin, Y.C. 2016. Review of landslide
occurrence and climate change in Taiwan. In Slope Safety Preparedness for
Impact of Climate Change, edited by Ho, K., Lacasse, S. & Picarelli, L.
London: CRC Press. hlm. 409-436. 10.1201/9781315387789-14.
Mark, R.K. & Ellen, S.D. 1995. Statistical and simulation
models for mapping debris-flow hazard. In Geographical Information Systems
in Assessing Natural Hazards. Netherlands: Springer. pp. 93-106.
Montgomery, C.W. 1997. Env. Geol. 5th ed. New York: WCB
McGraw-Hill Co.
Moore, I.D. & Gallant, J.C. 1991. Overview of hydrologic and
water quality modeling. Modeling the Fate of Chemicals in the Environmental,
edited by Moore, I.D. Canberra: Center for Resource and Environmental Studies,
the Australian National University. hlm. 1-8.
Morrison, D.G. 1967. On the interpretation of discriminant
analysis. Journal of Marketing Research 6(2): 156-163.
Moses, C. & Robinson, D. 2011. Chalk coast dynamics:
Implications for understanding rock coast evolution. Earth- Science Reviews 109(3-4):
63-73.
Mustafa Kamal. 2007. Climate change - Its effects on the
agricultural sector in Malaysia. Paper presented at National Seminar on
Socio-Economic Impact of Extreme Weather and Climate Change, organized by
the Ministry of Science, Technology and Innovation, Putrajaya, Malaysia. 21- 22
June.
Mwaniki, M.W., Moeller, M.S. & Schellmann. 2015. A comparison
of Landsat (OLI) and landsat & (ETM+) in mapping geology and visualizing
lineament: A case study of central region Kenya. International Symposium on
Remote Sensing of Environment. 11-15 May, Berlin, Germany.
Nagarajan, R., Roy, A.,
Kumar, R.V., Mukherjee, A. & Khire, M.V. 2000. Landslide hazard
susceptibility mapping based on terrain and climatic factors for tropical
monsoon regions. Bull. of Eng. Geol. and Env. 58(4): 275-287.
Nandi, A. & Shakoor, A. 2010. A GIS-based landslide
susceptibility evaluation using bivariate and multivariate statistical
analyses. Eng. Geol. 110(1-2): 11-20.
Nicholas, K.C. 1995. Geohazards: Natural and Human. New
Jersey: Prentice Hall.
Norusis, M.J. 1993. SPSS: SPSS for Windows, Base System User’s
Guide Release 6.0. SPSS Inc.
Nuriah, A.M., Ruslan, R. & Wan, M.M.W.I. 2018. Pemodelan
ruangan pelbagai jenis kegagalan cerun menggunakan rangkaian saraf buatan (ANN)
di Pulau Pinang, Malaysia. Jurnal Teknologi 80(4): 135-146.
Nuriah, A.M., Ruslan, R. & Wan, M.M.W.I. 2017. Pemodelan
ruangan pelbagai jenis kegagalan cerun di Pulau Pinang menggunakan kaedah
nisbah kekerapan. Geografi 5(2): 13-26.
Nuriah, A.M., Ruslan, R. & Wan, M.M.W.I. 2016. Analisis
taburan dan corak ruangan pelbagai jenis kegagalan cerun di Pulau Pinang,
Malaysia. International Journal of Environment, Society and Space 4(2):
1-15.
Ohlmacher, G.C. & Davis, J.C. 2003. Using multiple logistic
regression and GIS technology to predict landslide hazard in northeast Kansa,
USA. Eng. Geol. 2157: 1-13.
Oh, H.J. & Pradhan, B. 2011. Application of a neuro-fuzzy
model to landslide susceptibility mapping for shallow landslides in a tropical
hilly area. Comput. Geosci. 37: 1264-1276.
Pachauri, A.K., Gupta, P.V. & Chander, R. 1998. Landslide
zoning in a part of the Garhwal Himalayas. Environ. Geol. 36(3-4):
325-334.
Pham, B.T., Tien Bui, D., Pourghasemi, H.R., Indra, P. &
Dholakia, M.B. 2017. Landslide susceptibility assessment in the Uttarakhand
area (India) using GIS: A comparison study of prediction capability of naïve
bayes, multilayer perceptron neural networks, and functional trees methods. Theor.
Appl. Climatol. 128: 255-273.
Piegari, E., Cataudella, V., Di Maio, R., Milano, L., Nicodemi, M.
& Soldovieri, M.G. 2009. Electrical resistivity tomography and statistical
analysis in landslide modelling: A conceptual approach. Journal of Applied
Geophysics 68(2): 151-158.
Peng, M. & Zhang, L.M. 2012. Breaching parameters of landslide
dams. Landslides 9(1): 13-31.
Petley, D. 2017a. George Town: Another serious landslide in
Penang. The Landslide Blog - AGU Blogosphere. 5 November 2017. Diakses
pada 1 April 2019.
Petley, D. 2017b. The Tanjung Bungah landslide: A very challenging
site. The Landslide Blog - AGU Blogosphere. 24 Oktober 2017. Diakses
pada 1 April 2019.
Petley, D. 2018. George Town: Another major fatal landslide in
Penang, Malaysia. The Landslide Blog - AGU Blogosphere. 24 Oktober 2018.
Diakses pada 1 April 2019.
Pourghasemi, H.R., Jirandeh, A.G., Pradhan, B., Xu, C. &
Gokceoglu, C. 2013. Landslide susceptibility mapping using support vector
machine and GIS at the Golestan Province, Iran. Journal of Earth System
Science 122(2): 349-369.
Pourtaghi, Z.S. & Pourghasemi, H.R. 2014. GIS-based
groundwater spring potential assessment and mapping in the birjand township,
southern Khorasan province, Iran. Hydrogeol. J. 22(3): 643-662.
Pradhan, B. 2010. Remote sensing and GIS-based landslide hazard
analysis and cross-validation using multivariate logistic regression model on
three test areas in Malaysia. Advances in Space Research 45(10):
1244-1256.
Pradhan, B. & Buchroithner, M.F. 2010. Comparison and
validation of landslide susceptibility maps using an artificial neural network
model for three test areas in Malaysia. Environmental & Engineering
Geoscience 16(2): 107-126.
Pradhan, B., Lee, S., Mansor, S., Buchroithner, M., Jamaluddin, M.
& Khujaimah, Z. 2008. Utilization of optical remote sensing data and
geographic information system tools for regional landslide hazard analysis by
using binomial logistic regression model. J Appl Remote Sens 2: 1-11.
Raja, N.B., Cicek, I., Turkoglu, N., Aydin, O. & Kawasaki, A.
2017. Landslide susceptibility mapping of the Sera River Basin using logistic
regression model. Nat. Hazards. 85: 1323-1346.
Ramos-Canon, A.M., Prada-Sarmiento, L.F., Trujillo-Vela, M.G.,
Macías, J.P. & Santos-R, A.C. 2016. Linear discriminant analysis to describe
the relationship between rainfall and landslides in Bogotá, Colombia. Landslides 13: 671-681.
Romeo, R. 2000. Seismically induced landslide displacements: A
predictive model. Eng. Geol. 58: 337-351.
Rece, A. & Capolongo, D. 2002. Probabilistic modeling of
uncertainties in earthquakeinduced landslide hazard assessment. Comput.
Geosci. 28: 735-749.
Sahoo, S. 2009. A semi quantitative landslide susceptibility
assessment using logistic regression model and rock mass classification system:
Study in a part of Uttarakhand Himalaya, India. Thesis Master of Science. International
Institute for Geo-Information Science and Earth Observation Enshede the
Netherlands (Tidak diterbitkan).
Sarkar, S. & Kanungo, D.P. 2004. An integrated approach for
landslide susceptibility mapping using remote sensing and GIS. Photogram
Eng. Remote Sensing 70(5): 617-625.
Sharma, L.P., Patel, N., Ghose, M.K. & Debnath, P. 2014.
Application of frequency ratio and likelihood ratio model for geo-spatial
modelling of landslide hazard vulnerability assessment and zonation: A case
study from the Sikkim Himalayas in India. Geocarto International 29(2):
128-146.
Shou, K.J. & Yang, C.M. 2015. Predictive analysis of landslide
susceptibility under climate change conditions - A study on the Chingshui River
Watershed of Taiwan. Engineering Geology 192: 46-62.
Simon, N., Juhari Mat Akhir, Azlikamil Napiah & Kee, T.H.
2009. Pemetaan potensi bencana tanah runtuh menggunakan faktor penilaian
bencana tanah runtuh dengan pendekatan GIS. Geological Society of Malaysia 55:
47-53.
Suzen, M.L. & Kaya, B.S. 2011. Evaluation of environmental
parameters in logistic regression models for landslide susceptibility mapping. International
Journal of Digital Earth 5: 338-355.
Suzen, M.L. & Doyuran, V.A. 2004. Comparison of the GIS based
landslide susceptibility assessment methods: Multivariate versus bivariate. Environ.
Geol. 45: 665-679.
Tjia, H.D. 1987. Geomorfologi. Kuala Lumpur: Dewan Bahasa
dan Pustaka.
Tsangaratos, P. & Ilia, I. 2016. Landslide susceptibility
mapping using a modified decision tree classifier in the Xanthi Perfection,
Greece. Landslides 13: 305-320.
Tunusluoglu, M.C., Gokceoglu, C., Nefeslioglu, H.A. & Sonmez,
H. 2008. Extraction of potential debris source areas by logistic regression technique:
A case study from Barla, Besparmak and Kapi Mountains (NW Taurids, Turkey). Environ.
Geol. 54(1): 9-22.
Vahidnia, M.H.,
Alesheikh, A.A., Alimohammadi, A. & Hosseinali, F. 2010. A GIS-based
neuro-fuzzy procedure for integrating knowledge and data in landslide
susceptibility mapping. Comput. Geosci. 36: 1101-1114.
Van Westen, C.J.,
Rengers, N. & Soeters, R. 2003. Use of geomorphological information in
indirect landslide susceptibility assessment. Nat. Hazards 30: 399-413.
Wang, H.B. & Sassa,
K. 2005. Comparative evaluation of landslide susceptibility in Minamata area,
Japan. Environmental Geology 47(7): 956-966.
Wan Mohd Muhiyuddin,
W.I. 2005. Pembentukan model ruangan kegagalan cerun bagi sub lembangan hulu
Sungai Langat. Tesis PhD. Universiti Sains Malaysia (Tidak diterbitkan).
Yalcin, A. 2008.
GIS-Based landslides susceptibility mapping using analytical hierarchy process
and bivariate statistic in Ardesen (Turkey): Comparisons of results and
confirmations. Catena. 72(1): 1-12.
Yalcin, A. & Bulut,
F. 2007. Landslide susceptibility mapping using gis and digital photogrammetric
techniques: A case study from Ardesen (NE-Turkey). Nat. Hazards 41:
201-226.
Yesilnacar, E. &
Topal, T. 2005. Landslide susceptibility mapping: A comparison of logistic
regression and neural networks methods in a medium scale study, Hendek region
(Turkey). Engineering Geology 79: 251-266.
Youssef, A.M., Pradhan,
B., Gaber, A.F.D. & Buchroithner, M.F. 2009. Geomorphological hazard
analysis along the Egyptian red sea coast between Safaga and Quseir. Natural
Hazards and Earth System Sciences 9(3): 751-766.
Zezere, J.L., Pereira,
S., Tavares, A.O., Bateira, C., Trigo, R.M., Quaresma, I., Santos, P.P.,
Santos, M. & Verde, J. 2014. Disaster: A GIS database on
hydro-geomorphologic disasters in Portugal. Nat. Hazards 72: 503-532.
Zhou, G., Esaki, T.,
Mitani, Y., Xie, M. & Mori, J. 2003. Spatial probabilistic modeling of
slope failure using an integrated GIS Monte Carlo simulation approach. Engineering
Geology 68(3): 373-386.
*Pengarang
untuk surat-menyurat; email: nuriah@ukm.edu.my
|