Sains Malaysiana 48(7)(2019):
1459–1472
http://dx.doi.org/10.17576/jsm-2019-4807-15
Electrospun Cellulose
Fibres and Applications
(Serabut dan Aplikasi
Selulosa Elektropusing)
WAN FARAHHANIM WAN FATHILAH1 & RIZAFIZAH OTHAMAN1,2*
1Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Polymer
Research Center, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan: 4 Februari
2019/ Diterima: 24 April 2019
ABSTRACT
Cellulose fibres and
nanofibres have gained interest because of the high strength and firmness,
biodegradability and renewability. The enthusiasm in cellulose and its
modification as cellulose-derivative has been exponentially expanding. This
paper discuss on cellulose and its derivatives, and methods to produce
cellulose fibres and nanofibres. Emphasis is given on electrospinning
technique, the most utilised technique to produce cellulose fibres and
cellulose nanofibres with ranging from nanometer to millimeter in diameter. It
also summarises cellulose in terms of a matrix of cellulose, solvent, parameter
electrospinning, fibre diameter and their perspective applications.
Keywords: Cellulose;
cellulose nanofibre; electrospinning; electrospun
ABSTRAK
Serabut selulosa dan serabut
nano mendapat perhatian kerana kekuatan yang tinggi dan keteguhan,
keterbiodegradan dan keterbaharuan. Keghairahan dalam selulosa dan
pengubahsuaiannya sebagai selulosa-terbitan telah berkembang pesat.
Kertas ini membincangkan tentang selulosa dan terbitannya serta
kaedah untuk menghasilkan serabut selulosa dan serabut nano. Penekanan
diberikan pada teknik elektropemusingan, teknik yang paling kerap
digunakan untuk menghasilkan serabut selulosa dan selulosa serabut
nano dengan diameter antara nanometer hingga milimeter. Ia juga
merumuskan selulosa daripada segi matriks selulosa, pelarut, parameter
elektropemusingan, diameter serabut dan perspektif aplikasinya.
Kata kunci: Elektropemusingan; elektropusing; selulosa; selulosa
serabut nano
RUJUKAN
Thielemans, W. & David, R. 2011. Preparation method of
phenolic resin base carbon aerogel. Author, kindly provide full details.
Abe, K., Shinichiro, I.
& Hiroyuki, Y. 2007. Obtaining cellulose nanofibers with a uniform width of
15 nm from wood. Biomacromolecules 8(10): 3276-3278.
Ahne,
J., Qinghai, L., Eric, C. & Zhongchao, T. 2018. Electrospun cellulose
acetate nanofibers for airborne nanoparticle filtration. Textile Research
Journal. https://doi. org/10.1177/0040517518807440.
Akihito,
O. 2010. Papier pour enregistrement d’informations et papier traité. doi: WO
2011001706 A1.
Alemdar,
A. & Sain, M. 2008a. Biocomposites from wheat straw nanofibers: Morphology,
thermal and mechanical properties. Composites Science and Technology 68(2):
557-565. doi:10.1016/j.compscitech.2007.05.044.
Alemdar,
A. & Sain, M. 2008b. Isolation and characterization of nanofibers from
agricultural residues - Wheat straw and soy hulls. Bioresource Technology 99(6):
1664-1671. doi:10.1016/j.biortech.2007.04.029.
Anitha,
S., Brabu, B., John, D., Thiruvadigal, Gopalakrishnan, C. & Natarajan, T.S.
2013. Optical, bactericidal and water repellent properties of electrospun
nano-composite membranes of cellulose acetate and ZnO. Carbohydrate Polymers 97(2): 856-863. https://doi.org/10.1016/j. carbpol.2013.05.003.
Anderson,
E. 2009. Skin care compositions for the delivery of agents. WO2010115426 A1.
Anna,
J.S., My, A.S.A.S. & Berglund, L.A. 2007. Biomimetic polysaccharide
nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8): 2556-2563. doi:10.1021/BM0703160.
Baptista,
A.C., Ropio, I., Romba, B., Nobre, J.P., Henriques, C., Silva, J.C., Martins,
J.I., Borges, J.P. & Ferreira, I. 2018. Cellulose-based electrospun fibers
functionalized with polypyrrole and polyaniline for fully organic batteries. Journal
of Materials Chemistry. 6(1): 256-265. https://doi. org/10.1039/c7ta06457h.
Baptista,
A.C., Martins, J.J., Fortunato, E., Martins, R., Borges, J.P. & Ferreira,
I. 2011. Thin and flexible bio-batteries made of electrospun cellulose-based
membranes. Biosensors and Bioelectronics 26(5): 2742-2745.
https://doi.org/10.1016/j. bios.2010.09.055.
Benjamin,
C., Benjamin, H. & Hongyang, M. 2010. High flux high efficiency nanofiber
membranes and methods of production thereof. USWO2010042647A2.
Benjamin,
C., Benjamin H. & Hongyang, M. 2008. Membranes de séparation de fluides à
haut flux comprenant une couche de cellulose ou d’un dérivé de cellulose.
WO2009025900 A2.
Bledzki,
A.K., Reihmane, S. & Gassan, J. 1996. Properties and modification methods
for vegetable fibers for natural fiber composites. Journal of Applied
Polymer Science 59(8): 1329-1336. doi:10.1002/(SICI)1097-
4628(19960222)59:8<1329::AID-APP17>3.3.CO;2-5.
Bognitzki,
M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Greiner, A.
& Wendorff, J.H. 2001. Nanostructured fibers via electrospinning. Advanced
Materials 13(1): 70-72.
doi:10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H.
Bordeanu,
N., Eyholzer, C. & Zimmermann, T. 2009. Surface modified cellulose
nanofibers. doi:WO 2010066905 A1.
Celebioglu,
A. & Uyar, T. 2011. Electrospun porous cellulose acetate fibers from
volatile solvent mixture. Materials Letters 65(14): 2291-2294.
https://doi.org/10.1016/j. matlet.2011.04.039.
Chandrabhas,
N. 2008. Nanoparticle composition and process thereof. US8834917B2.
Cucolo,
J.A., Aminuddin, N. & Frey, M. 2001. Structure formation in polymeric
fibers. Hanser Gardner Publications http://www.hanserpublications.com/Products/227-structure-formation-in-polymeric-fibers.aspx.
pp. 296-328.
de
Morais Teixeira, E., Corrêa, A.C., Manzoli, A., de Lima Leite, F., de Oliveira,
C.R. & Mattoso, L.H.C. 2010. Cellulose nanofibers from white and naturally
colored cotton fibers. Cellulose 17(3): 595-606. doi:10.1007/s10570-010-9403-0.
Dixit,
V., Jagdish, T. & Kay, O.S. 2010. Fungal growth inhibition of regenerated
cellulose nanofibrous membranes containing quillaja saponin. Archives of
Environmental Contamination and Toxicology 59(3): 417-423.
https://doi.org/10.1007/ s00244-010-9493-6.
Faten
Ermala Che Othman, Norhaniza Yusof, Amirul Afiat Raffi, Hasrinah Hasbullah,
Farhana Aziz, Wan Norharyati Wan Salleh & Ahmad Fauzi Ismail. 2017.
Preparation and characterization of different loading of zinc oxide on
activated carbon nanofibers. Malaysian Journal of Analytical Science 21(2):
365-371. doi:10.17576/mjas-2017-2102-11.
Fauzee,
S.N. & Othaman, R. 2013. Extraction and dissolution of cellulose from nypa
fruit husk for nanofibers fabrication. AIP Conference Proceedings 1571
(December 2013): 904-910. doi:10.1063/1.4858769.
Filion,
T.M., Artem, K. & Jie, S. 2011. Chemically modified cellulose fibrous
meshes for use as tissue engineering scaffolds. Bioorganic and Medicinal
Chemistry Letters 21(17): 5067- 5070. https://doi.org/10.1016/j.bmcl.2011.04.032.
Freire,
M.G., Ana, R., Teles, R., Rute, A.S., Ferreira, L.D., Carlos, J.A.,
Lopes-da-Silva & João, A.P.C. 2011. Electrospun nanosized cellulose fibers
using ionic liquids at room temperature. Green Chemistry 13(11): 3173.
https://doi. org/10.1039/c1gc15930e.
Frey,
M. & Joo, Y. 2004. Cellulose solution in novel solvent and electrospinning
thereof. doi:US 20050247236 A1.
Georgopoulos,
S.T., Tarantili, P.A., Avgerinos, E., Andreopoulos, A.G. & Koukios, E.G.
2005. Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer
Degradation and Stability 90(2 SPEC. ISS.): 303-312.
doi:10.1016/j.polymdegradstab.2005.02.020.
Henriksson,
M., Berglund, L.A., Isaksson, P., Lindström, T. & Nishino, T. 2008.
Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):
1579-1585. doi:10.1021/bm800038n.
Henriksson,
M., Henriksson, G., Berglund, L.A. & Lindström, T. 2007. An environmentally
friendly method for enzyme-assisted preparation of microfibrillated cellulose
(MFC) nanofibers. European Polymer Journal 43(8): 3434-3441.
doi:10.1016/j.eurpolymj.2007.05.038.
Holik,
H. 2006. Handbook of Paper and Board. New York: Wiley-VCH.
Hornsby,
P.R., Hinrichsen, E. & Tarverdi, K. 1997. Preparation and properties of
polypropylene composites reinforced with wheat and flax straw fibres Part II
analysis of composite microstructure and mechanical properties JMS60060
JMS60060. Journal of Materials Science 32: 1009-1015.
doi:10.1023/A:1018578322498.
Hsieh,
J.D.Y. 2009. Cellulose/Chitosan hybrid nanofibers from electrospinning of their
ester derivatives. Cellulose 16(2): 247-260.
https://doi.org/10.1007/s10570-008-9266-9.
Huang, C., Stefaan, J.S., Ellen,
V.G., Guido, V., Joanna, R., Serge, V.C., Chris, V., Coenye, T., Verstraelen,
H., Temmerman, M., Demeester, J. & De Smedt, S.C.
2012. Biomaterials electrospun cellulose acetate phthalate fibers for semen
induced anti-HIV vaginal drug delivery. Biomaterials 33(3): 962-969.
https://doi.org/10.1016/j.biomaterials.2011.10.004.
Huang, X.J., Peng, C.C., Fu, H., Yang, O., Ming, R.C. & Zhi,
K.X. 2011. Immobilization of Candida rugosa lipase on electrospun
cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic 70(3-4):
95-100. https:// doi.org/10.1016/j.molcatb.2011.02.010.
Huang, Z.M., Zhang, Y.Z., Kotaki, M. & Ramakrishna, S. 2003. A
review on polymer nanofibers by electrospinning and their applications in
nanocomposites. Composite Science and Technology 63(5): 2223-2253.
doi:10.1016/S0266- 3538(03)00178-7.
Hutmacher, D.W. & Dalton, P.D. 2011. Melt electrospinning. Chemistry
- An Asian Journal 6(1): 44-56. doi:10.1002/ asia.201000436.
Ioelovich, M. 2008. Cellulose as a nanostructured polymer. BioResources 3(4): 1403-1418.
Javadian, M., Rostamizadeh, K. & Danafar, H. 2012. Preparation
and characterization of electrospinning PEG-PLA nanofibers for sustained
release of tamoxifen. Research in Pharmaceutical Sciences 7: 5.
Jaworek, A., Krupa, A., Lackowski, M., Sobczyk, A.T., Czech, T.,
Ramakrishna, S., Sundarrajan, S. & Pliszka, D. 2009. Electrospinning and
electrospraying techniques for nanocomposite non-woven fabric production. Fibres
and Textiles in Eastern Europe 75(4): 77-81.
John, M.J. & Thomas, S. 2008. Biofibres and biocomposites. Carbohydrate
Polymers 71(3): 343-364. doi:10.1016/j. carbpol.2007.05.040.
Kalia, S., Kaith, B.S. & Vashistha, S. 2011. Cellulose
nanofibers reinforced bioplastics and their applications. Handbook of
Bioplastics and Biocomposites Engineering Applications, edited by Pilla, S.
Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 452-470.
doi:10.1002/9781118203699.ch16.
Kaushik, A., Singh, M. & Verma, G. 2010. Green nanocomposites
based on thermoplastic starch and steam exploded cellulose nanofibrils from
wheat straw. Carbohydrate Polymers 82(2): 337-345.
doi:10.1016/j.carbpol.2010.04.063.
Khatri, Z., Kai, W., Byoung-suhk, K. & Ick-soo, K. 2012.
Effect of deacetylation on wicking behavior of co-electrospun cellulose
acetate/polyvinyl alcohol nanofibers blend. Carbohydrate Polymers 87(3):
2183-2188. https://doi. org/10.1016/j.carbpol.2011.10.046.
Kim, C., Dae-sik, K., Seung-yeon, K., Manuel, M. & Yong, L.
2006. Structural studies of electrospun cellulose nanofibers. Polymer 47(14):
5097-5107. https://doi.org/10.1016/j. polymer.2006.05.033.
Klemm, D., Heublein, B., Fink, H.P. & Bohn, A. 2005.
Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte
Chemie (International ed. in English) 44(22): 3358-3393. doi:10.1002/anie.200460587.
Knox, D., Klein, E., Babinsky, V. & Klein, S. 2005. Process
and apparatus for coating paper. US20070148365A1.
Koslow, E. 2003. Microporous filter media, filtration systems
containing same, and methods of making and using. doi:US 20030205530 A1.
Kozlowski, R., Laszkiewicz, B., Kulpinski, P., Muzyczek, M.,
Czarnecki, P., Rubacha, M., Niekraszewicz, B., Jedrzejczak, J. & Peczek, B.
2007. Method of manufacturing silver nanoparticles, cellulosic fibers and
nanofibers containing silver nanoparticles, fibers and nanofibers containing
silver nanoparticles, use of silver nanoparticles to the manufacture of
cellulosic fibers and nanofibers. European Patent EP0905289.
Krässig, H.A. 1993. Cellulose: Structure, Accessibility,
and Reactivity. Philadephia: Gordon and Breach Publishers.
Kundu, S., Feio, G., Pinto, L.F.V., Almeida, P.L., Figueirinhas,
J.L. & Godinho, M.H. 2010. Deuterium NMR study of orientational order in
cellulosic network microfibers. Macromolecules 43(13): 5749-5755.
doi:10.1021/ ma100882w.
Laborie, M.P. & Brown, E. 2009. Method of in situ bioproduction
and composition of bacterial cellulose nanocomposites. doi:US20090192264 A1.
Leach, M.K., Feng, Z.Q., Tuck, S.J. & Corey, J.M. 2011.
Electrospinning fundamentals: optimizing solution and apparatus parameters. Journal
of Visualized Experiments (47): e2494-e2494. doi:10.3791/2494.
Lee, H., Masayoshi, N., Daewon, S. & Jung, S. 2018. Control of
the morphology of cellulose acetate nanofibers via electrospinning. Cellulose.
https://doi.org/10.1007/s10570- 018-1744-0.
Lim, Y. & Pyo, J. 2010. Preparation of cellulose-based
nanofibers using electrospinning. Intech Open. February. https://www.
intechopen.com/books/nanofibers/preparation-of-cellulose-based-nanofibers-using-electrospinning.
Lisboa, U.N.D.E. 2009. Nanofibras celulósicas obtidas por
electrospinning a partir 24(11).
Lisunova, M., Attila, H., Benjamin, H., Vitaliy, D. &
Stephanie, R. 2010. Nanofibres of CA/PAN with high amount of carbon nanotubes
by core-shell electrospinning. Composites Science and Technology 70(11):
1584-1588. https://doi.org/10.1016/j. compscitech.2010.07.001.
Lv, P., Muhammad, N., Qufu, W., Huimin, Z. & Tayyab, N. 2018.
A novel in situ self-assembling fabrication method for bacterial
cellulose-electrospun nanofiber hybrid structures. Polymers 10(7): 712.
https://doi.org/10.3390/ polym10070712.
Magalhaes, W.L.E., Cao, X. & Lucia, A.L. 2009. Cellulose
nanocrystals/Cellulose core-in-shell nanocomposite assemblies. Langmuir 25(22):
13250-13257. https://doi. org/10.1021/la901928j.
Marsh, J.T. & Wood, F.C. 1942. An Introduction to the
Chemistry of Cellulose. London: Chapman & Hall. http://www.archive.
org/details/introductiontoth029129mbp.
Medronho, B. & Lindman, B. 2015. Brief overview on cellulose
dissolution/regeneration interactions and mechanisms. Advances in Colloid
and Interface Science 222: 502-508. doi:10.1016/j.cis.2014.05.004.
Medronho, B., Romano, A., Miguel, M.G., Stigsson, L. &
Lindman, B. 2012. Rationalizing cellulose (in)solubility: Reviewing basic
physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):
581-587. doi:10.1007/s10570-011-9644-6.
Meier, H. 1962. Chemical and morphological aspects of the fine
structure of wood. Pure App. Chem. 5: 37-52.
Miao, J., Ravindra, C., Pangule, E.E., Paskaleva, Elizabeth, E.,
Hwang, Ravi, S., Kane, R.J., Linhardt & Jonathan, S.D. 2011.
Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity
for wound healing applications. Biomaterials 32(36): 9557-9567. https://doi.org/10.1016/j.
biomaterials.2011.08.080.
Miyauchi,
M., Jianjun, M., Trevor, J.S., Jonathan, S.D. & Robert, J.L. 2011.
Chromatography flexible electrospun cellulose fibers as an affinity packing
material for the separation of bovine serum albumin. Journal of
Chromatography & Separation Techniques 2: 110.
https://doi.org/10.4172/2157- 7064.1000110.
M. Sain, M. &
Bhatnagar, A. 2004. Manufacturing process of cellulose nanofibers from
renewable feed stocks. US 20080146701 A1.
Moon,
R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. 2011. Cellulose
nanomaterials review: Structure, properties and nanocomposites. Chem. Soc.
Rev. 40: 3941-3994. doi:10.1039/c0cs00108b.
Muhammad
Hariz Othman, Mahathir Mohamed, Ibrahim Abdullah & Dahlan Haji Mohd. 2014.
Preparation of non-woven fiber mats by mixture of pvc and epoxidized natural
rubber. Journal of Nuclear and Related Technology 11(1): 1-10.
http://www.nuklearmalaysia.org/publication/jnrt/8- jnrt/9-jnrt-volume-14-2020.
Muhammad
Johan Iskandar Zahari, Noraisah Mohd Jahi, Nurul Hanisah Mohd, Ishak Ahmad,
Azizah Baharum, Azwan Mat Lazim, Suria Ramli & Rizafizah Othaman. 2018.
Enhanced performance of cellulose from palm oil empty fruit bunch (EFB) via
acetylation and silylation. Preprints (July): 20. doi:10.20944/preprints201807.0314.v1.
Ohkawa,
K. 2015. Nanofibers of cellulose and its derivatives fabricated using direct
electrospinning. Molecules 20(5): 9139-9154.
doi:10.3390/molecules20059139.
Oksman,
K., Bondeson, D. & Syre, P. 2006. Nanocomposites based on cellulose
whiskers and cellulose plastics. US20080108772A1.
Oku, Y.
2009. Flexible substrate and manufacturing method thereof. doi:US 20090202843
A1.
Pääkkö,
M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M.,
Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O. & Lindström, T. 2007.
Enzymatic hydrolysis combined with mechanical shearing and high-pressure
homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6): 1934-1941. doi:10.1021/ BM061215P.
Phiriyawirut,
M. & Phachamud, T. 2011. Suitable electrospinning condition for gallic
acid-loaded cellulose acetate fiber. Research Journal of Pharmaceutical,
Biological and Chemical Sciences 2(3): 210
Pittarate,
C., Tipaporn, Y., Walaiporn, S., Narupol, I. & Saowakon, W. 2011. Effects
of poly(ethylene oxide) and ZnO nanoparticles on the morphology, tensile and
thermal properties of cellulose acetate nanocomposite fibrous film. Polymer
Journal 43(12): 978-986. https://doi.org/10.1038/ pj.2011.97.
Ponomarenko,
A.T., Figovsky, O. & Shevchenko, V.G. 2008. Multifunctional polymer
composites for structures: present state, problems, future. Advanced
Materials Research 47- 50: 81-84.
doi:10.4028/www.scientific.net/AMR.47-50.81.
Prasanth,
R., Nageswaran, S., Kumar, V. & Ahn, J. 2015. Electrospinning of cellulose:
Process and applications. In Nanocellulose Polymer Nanocomposites, edited
by Thakur, V.K. Austin: Scrivener Publishing LLC. pp. 311-340.
Qinglin,
W., Changtong, M., Xiuqiang, Z., Tingzhou, L., Zhen, Z. & Meichun, L. 2018.
Electrospun poly(ethylene oxide) fibers reinforced with poly (vinylpyrrolidone)
polymer and cellulose nanocrystals. IntechOpen 4: 53-68.
https://doi.org/ http://dx.doi.org/10.5772/intechopen.76392.
Quan,
S.L., Kang, S.G. & Chin, I.J. 2010. Characterization of cellulose fibers
electrospun using ionic liquid. Cellulose 17(2): 223-230.
doi:10.1007/s10570-009-9386-x.
Razali,
R.A., Lokanathan, Y., Chowdhury, S.R., Saim, A. & Idrus, R.H. 2018.
Physicochemical and structural characterization of surface modified electrospun
PMMA nanofibre. Sains Malaysiana 47(8): 1787-1794.
doi:10.17576/jsm-2018- 4708-17.
Reneker,
D.H. & Yarin, A.L. 2008. Electrospinning jets and polymer nanofibers. Polymer 49(10): 2387-2425. doi:10.1016/j.polymer.2008.02.002
Rezaei,
A., Ali, N. & Milad, F. 2015. Application of cellulosic nanofibers in food
science using electrospinning and its potential risk application of cellulosic
nanofibers in food science using electrospinning and its potential risk. Comprehensive
Reviews in Food Science and Food Safety 14(3): 269-284.
https://doi.org/10.1111/1541-4337.12128.
Rojas,
J., Bedoya, M. & Ciro, Y. 2015. Current trends in the production of
cellulose nanoparticles and nanocomposites for biomedical applications. Cellulose
- Fundamental Aspects and Current Trends. InTech. doi:10.5772/61334.
Rosenau,
T., Potthast, A. & Kosma, P. 2006. Trapping of reactive intermediates to
study reaction mechanisms in cellulose chemistry. Polysaccharides II,
edited by Klemm, D. Berlin Heidelberg: Springer. pp. 153-197.
doi:10.1007/12_098.
Rosdi,
N.H., Mohd Kanafi, N. & Abdul Rahman, N. 2018. Preparation and thermal
properties of cellulose acetate/ polystyrene blend nanofibers via
electrospinning technique. Pertanika Journal of Science & Technology 26(3):
979-990.
Saheb,
D.N. & Jog, J.P. 1999. Natural fiber polymer composites: A review. Advances
in Polymer Technology 18(4): 351-363.
Saurabh,
C.K., Mustapha, A., Mohd Masri, M., Owolabi, A.F., Syakir, M.I., Dungani, R.,
Paridah, M.T., Jawaid, M. & Abdul Khalil, H.P.S. 2016. Isolation and
characterization of cellulose nanofibers from Gigantochloa scortechinii as
a reinforcement material. Journal of Nanomaterials 2016: Article ID.
4024527.
Siró,
I. & Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite
materials: A review. Cellulose 17(3): 459-494.
doi:10.1007/s10570-010-9405-y.
Stelte,
W. & Sanadi, A.R. 2009. Preparation and characterization of cellulose
nanofibers from two commercial hardwood and softwood pulps. Industrial &
Engineering Chemistry Research 48(24): 11211-11219. doi:10.1021/ie9011672.
Stephen,
M., Ngila, C., Moodley, B., Kindness, A., Petrik, L. & Greyling, C. 2011.
Oxolane-2,5-Dione modified electrospun cellulose nanofibers for heavy metals
adsorption. Journal of Hazardous Materials 192(2): 922-927. https://doi.
org/10.1016/j.jhazmat.2011.06.001.
Thielemans,
W. & David, R. 2011. Preparation method of phenolic resin base carbon
aerogel.
Tian,
Y., Min, W., Ruigang, L., Yanxiang, L., Deqian, W., Junjun, T., Rongcheng, W.
& Yong, H. 2011. Electrospun membrane of cellulose acetate for heavy metal
ion adsorption in water treatment. Carbohydrate Polymers 83(2): 743-748.
https:// doi.org/10.1016/j.carbpol.2010.08.054.
Vallejos,
E., Peresin, M.S. & Rojas, O.J. 2012. All-cellulose composite fibers
obtained by electrospinning dispersions of cellulose acetate and cellulose
nanocrystals. Journal of Polymers and the Environment 20(4): 1075-1083.
doi:10.1007/s10924-012-0499-1.
Wang,
B. & Sain, M. 2007. Dispersion of soybean stock-based nanofiber in a
plastic matrix. Polymer International 56(4): 538-546.
doi:10.1002/pi.2167
Wang, H.S., Fu, G.D. & Li, X.S.
2009. Functional polyme r ic nanof ibe r s f rom elect rospin ning. Recent Patents on Nanotechnology 3(1): 21-31. doi:10.2174/187221009787003285.
Wang, M., Guowen, M.,
Qing, H. & Yiwu, Q. 2012. Electrospun 1,4-DHAQ-doped cellulose nanofiber
films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environ.
Sci. Technol. 46(1): 367-373.
Wongsasulak,
S., Manashuen, P., Jochen, W., Pitt, S. & Tipaporn, Y. 2010.
Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen
blends. Journal of Food Engineering 98(3): 370-376.
https://doi.org/10.1016/j. jfoodeng.2010.01.014.
Xiao,
Y., Yanjuan, C., Yan, L., Binjie, X., Lantian, L., Yanggang, S. & Zhuoming,
C. 2018. Electrospun natural cellulose/polyacrylonitrile nanofiber: Simulation
and experimental study. Textile Research Journal. https://doi.
org/10.1177/0040517518779256.
Xu-Ting,
Z., Chiu, C.L., Saba, N., Syang-Peng, R. & Chang- Mou, W. 2018. Oil-water
separation of electrospun cellulose triacetate nanofiber membranes modified by
electrophoretically deposited tio2/graphene oxide. Polymers 10(7): 746.
https://doi.org/10.3390/polym10070746.
Yao,
L., Lee, C. & Kim, J. 2011. Electrospun meta-aramid/ cellulose acetate and
meta-aramid/cellulose composite nanofibers. Fibers and Polymers 12(2):
197-206. https://doi. org/10.1007/s12221-011-0197-y.
Yazdanbakhsh,
M.F., Rashidi, A., Rahimi, M.K., Khajavi, R. & Shafaroodi, H. 2018. The
effect of impregnated alpha-cellulose nanofibers with ciprofloxacin
hydrochloride on Staphylococcus aureus in vitro and healing process of
wound in Rat. Regenerative Engineering and Translational Medicine 4(4):
247-256.
Yoshitake
Yamada, Yuji Abe, Shoichi Miyawaki, Shiho Katsukawa, Hiroshi Abe, Yuko Iijima,
Akira Isogai, L. 2010. Papier couché. WO 2010113805 A1.
Young-Mook,
L. 2010. Preparation of cellulose-based nanofibers using electrospinning. Advanced
Radiation Technology Institute, Korea Atomic Energy Research Institute,
Republic of Korea. doi:10.5772/8153.
Yu,
J.H. 2007. Electrospinning of polymeric nanofiber materials: process
characterization and unique applications. PhD Thesis. Massachusetts Institute
of Technology (Unpublished).
Zeng,
J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L. & Jing, X. 2003.
Biodegradable electrospun fibers for drug delivery. Journal of Controlled
Release 92(3): 227-231. doi:10.1016/ S0168-3659(03)00372-9.
Zhou,
J. & Zhang, L. 2000. Solubility of cellulose in NaOH/ Urea aqueous
solution. Polymer Journal 32(10): 866-870. doi:10.1295/polymj.32.866.
Zimmermann,
T., Bordeanu, N. & Strub, E. 2010. Properties of nanofibrillated cellulose
from different raw materials and its reinforcement potential. Carbohydrate
Polymers 79(4): 1086-1093. doi:10.1016/j.carbpol.2009.10.045.
*Pengarang untuk surat-menyurat;
email: rizafizah@ukm.edu.my
|