Sains Malaysiana 48(7)(2019): 1459–1472

http://dx.doi.org/10.17576/jsm-2019-4807-15

 

Electrospun Cellulose Fibres and Applications

(Serabut dan Aplikasi Selulosa Elektropusing)

 

WAN FARAHHANIM WAN FATHILAH1 & RIZAFIZAH OTHAMAN1,2*

 

1Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 4 Februari 2019/ Diterima: 24 April 2019

 

ABSTRACT

Cellulose fibres and nanofibres have gained interest because of the high strength and firmness, biodegradability and renewability. The enthusiasm in cellulose and its modification as cellulose-derivative has been exponentially expanding. This paper discuss on cellulose and its derivatives, and methods to produce cellulose fibres and nanofibres. Emphasis is given on electrospinning technique, the most utilised technique to produce cellulose fibres and cellulose nanofibres with ranging from nanometer to millimeter in diameter. It also summarises cellulose in terms of a matrix of cellulose, solvent, parameter electrospinning, fibre diameter and their perspective applications.

 

Keywords: Cellulose; cellulose nanofibre; electrospinning; electrospun

ABSTRAK

Serabut selulosa dan serabut nano mendapat perhatian kerana kekuatan yang tinggi dan keteguhan, keterbiodegradan dan keterbaharuan. Keghairahan dalam selulosa dan pengubahsuaiannya sebagai selulosa-terbitan telah berkembang pesat. Kertas ini membincangkan tentang selulosa dan terbitannya serta kaedah untuk menghasilkan serabut selulosa dan serabut nano. Penekanan diberikan pada teknik elektropemusingan, teknik yang paling kerap digunakan untuk menghasilkan serabut selulosa dan selulosa serabut nano dengan diameter antara nanometer hingga milimeter. Ia juga merumuskan selulosa daripada segi matriks selulosa, pelarut, parameter elektropemusingan, diameter serabut dan perspektif aplikasinya.

 

Kata kunci: Elektropemusingan; elektropusing; selulosa; selulosa serabut nano

RUJUKAN

Thielemans, W. & David, R. 2011. Preparation method of phenolic resin base carbon aerogel. Author, kindly provide full details.

Abe, K., Shinichiro, I. & Hiroyuki, Y. 2007. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10): 3276-3278.

Ahne, J., Qinghai, L., Eric, C. & Zhongchao, T. 2018. Electrospun cellulose acetate nanofibers for airborne nanoparticle filtration. Textile Research Journal. https://doi. org/10.1177/0040517518807440.

Akihito, O. 2010. Papier pour enregistrement d’informations et papier traité. doi: WO 2011001706 A1.

Alemdar, A. & Sain, M. 2008a. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology 68(2): 557-565. doi:10.1016/j.compscitech.2007.05.044.

Alemdar, A. & Sain, M. 2008b. Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls. Bioresource Technology 99(6): 1664-1671. doi:10.1016/j.biortech.2007.04.029.

Anitha, S., Brabu, B., John, D., Thiruvadigal, Gopalakrishnan, C. & Natarajan, T.S. 2013. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydrate Polymers 97(2): 856-863. https://doi.org/10.1016/j. carbpol.2013.05.003.

Anderson, E. 2009. Skin care compositions for the delivery of agents. WO2010115426 A1.

Anna, J.S., My, A.S.A.S. & Berglund, L.A. 2007. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8): 2556-2563. doi:10.1021/BM0703160.

Baptista, A.C., Ropio, I., Romba, B., Nobre, J.P., Henriques, C., Silva, J.C., Martins, J.I., Borges, J.P. & Ferreira, I. 2018. Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry. 6(1): 256-265. https://doi. org/10.1039/c7ta06457h.

Baptista, A.C., Martins, J.J., Fortunato, E., Martins, R., Borges, J.P. & Ferreira, I. 2011. Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics 26(5): 2742-2745. https://doi.org/10.1016/j. bios.2010.09.055.

Benjamin, C., Benjamin, H. & Hongyang, M. 2010. High flux high efficiency nanofiber membranes and methods of production thereof. USWO2010042647A2.

Benjamin, C., Benjamin H. & Hongyang, M. 2008. Membranes de séparation de fluides à haut flux comprenant une couche de cellulose ou d’un dérivé de cellulose. WO2009025900 A2.

Bledzki, A.K., Reihmane, S. & Gassan, J. 1996. Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science 59(8): 1329-1336. doi:10.1002/(SICI)1097- 4628(19960222)59:8<1329::AID-APP17>3.3.CO;2-5.

Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Greiner, A. & Wendorff, J.H. 2001. Nanostructured fibers via electrospinning. Advanced Materials 13(1): 70-72. doi:10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H.

Bordeanu, N., Eyholzer, C. & Zimmermann, T. 2009. Surface modified cellulose nanofibers. doi:WO 2010066905 A1.

Celebioglu, A. & Uyar, T. 2011. Electrospun porous cellulose acetate fibers from volatile solvent mixture. Materials Letters 65(14): 2291-2294. https://doi.org/10.1016/j. matlet.2011.04.039.

Chandrabhas, N. 2008. Nanoparticle composition and process thereof. US8834917B2.

Cucolo, J.A., Aminuddin, N. & Frey, M. 2001. Structure formation in polymeric fibers. Hanser Gardner Publications http://www.hanserpublications.com/Products/227-structure-formation-in-polymeric-fibers.aspx. pp. 296-328.

de Morais Teixeira, E., Corrêa, A.C., Manzoli, A., de Lima Leite, F., de Oliveira, C.R. & Mattoso, L.H.C. 2010. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3): 595-606. doi:10.1007/s10570-010-9403-0.

Dixit, V., Jagdish, T. & Kay, O.S. 2010. Fungal growth inhibition of regenerated cellulose nanofibrous membranes containing quillaja saponin. Archives of Environmental Contamination and Toxicology 59(3): 417-423. https://doi.org/10.1007/ s00244-010-9493-6.

Faten Ermala Che Othman, Norhaniza Yusof, Amirul Afiat Raffi, Hasrinah Hasbullah, Farhana Aziz, Wan Norharyati Wan Salleh & Ahmad Fauzi Ismail. 2017. Preparation and characterization of different loading of zinc oxide on activated carbon nanofibers. Malaysian Journal of Analytical Science 21(2): 365-371. doi:10.17576/mjas-2017-2102-11.

Fauzee, S.N. & Othaman, R. 2013. Extraction and dissolution of cellulose from nypa fruit husk for nanofibers fabrication. AIP Conference Proceedings 1571 (December 2013): 904-910. doi:10.1063/1.4858769.

Filion, T.M., Artem, K. & Jie, S. 2011. Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorganic and Medicinal Chemistry Letters 21(17): 5067- 5070. https://doi.org/10.1016/j.bmcl.2011.04.032.

Freire, M.G., Ana, R., Teles, R., Rute, A.S., Ferreira, L.D., Carlos, J.A., Lopes-da-Silva & João, A.P.C. 2011. Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry 13(11): 3173. https://doi. org/10.1039/c1gc15930e.

Frey, M. & Joo, Y. 2004. Cellulose solution in novel solvent and electrospinning thereof. doi:US 20050247236 A1.

Georgopoulos, S.T., Tarantili, P.A., Avgerinos, E., Andreopoulos, A.G. & Koukios, E.G. 2005. Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer Degradation and Stability 90(2 SPEC. ISS.): 303-312. doi:10.1016/j.polymdegradstab.2005.02.020.

Henriksson, M., Berglund, L.A., Isaksson, P., Lindström, T. & Nishino, T. 2008. Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6): 1579-1585. doi:10.1021/bm800038n.

Henriksson, M., Henriksson, G., Berglund, L.A. & Lindström, T. 2007. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal 43(8): 3434-3441. doi:10.1016/j.eurpolymj.2007.05.038.

Holik, H. 2006. Handbook of Paper and Board. New York: Wiley-VCH.

Hornsby, P.R., Hinrichsen, E. & Tarverdi, K. 1997. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres Part II analysis of composite microstructure and mechanical properties JMS60060 JMS60060. Journal of Materials Science 32: 1009-1015. doi:10.1023/A:1018578322498.

Hsieh, J.D.Y. 2009. Cellulose/Chitosan hybrid nanofibers from electrospinning of their ester derivatives. Cellulose 16(2): 247-260. https://doi.org/10.1007/s10570-008-9266-9.

Huang, C., Stefaan, J.S., Ellen, V.G., Guido, V., Joanna, R., Serge, V.C., Chris, V., Coenye, T., Verstraelen, H., Temmerman, M., Demeester, J. & De Smedt, S.C. 2012. Biomaterials electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials 33(3): 962-969. https://doi.org/10.1016/j.biomaterials.2011.10.004.

Huang, X.J., Peng, C.C., Fu, H., Yang, O., Ming, R.C. & Zhi, K.X. 2011. Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic 70(3-4): 95-100. https:// doi.org/10.1016/j.molcatb.2011.02.010.

Huang, Z.M., Zhang, Y.Z., Kotaki, M. & Ramakrishna, S. 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composite Science and Technology 63(5): 2223-2253. doi:10.1016/S0266- 3538(03)00178-7.

Hutmacher, D.W. & Dalton, P.D. 2011. Melt electrospinning. Chemistry - An Asian Journal 6(1): 44-56. doi:10.1002/ asia.201000436.

Ioelovich, M. 2008. Cellulose as a nanostructured polymer. BioResources 3(4): 1403-1418.

Javadian, M., Rostamizadeh, K. & Danafar, H. 2012. Preparation and characterization of electrospinning PEG-PLA nanofibers for sustained release of tamoxifen. Research in Pharmaceutical Sciences 7: 5.

Jaworek, A., Krupa, A., Lackowski, M., Sobczyk, A.T., Czech, T., Ramakrishna, S., Sundarrajan, S. & Pliszka, D. 2009. Electrospinning and electrospraying techniques for nanocomposite non-woven fabric production. Fibres and Textiles in Eastern Europe 75(4): 77-81.

John, M.J. & Thomas, S. 2008. Biofibres and biocomposites. Carbohydrate Polymers 71(3): 343-364. doi:10.1016/j. carbpol.2007.05.040.

Kalia, S., Kaith, B.S. & Vashistha, S. 2011. Cellulose nanofibers reinforced bioplastics and their applications. Handbook of Bioplastics and Biocomposites Engineering Applications, edited by Pilla, S. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 452-470. doi:10.1002/9781118203699.ch16.

Kaushik, A., Singh, M. & Verma, G. 2010. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers 82(2): 337-345. doi:10.1016/j.carbpol.2010.04.063.

Khatri, Z., Kai, W., Byoung-suhk, K. & Ick-soo, K. 2012. Effect of deacetylation on wicking behavior of co-electrospun cellulose acetate/polyvinyl alcohol nanofibers blend. Carbohydrate Polymers 87(3): 2183-2188. https://doi. org/10.1016/j.carbpol.2011.10.046.

Kim, C., Dae-sik, K., Seung-yeon, K., Manuel, M. & Yong, L. 2006. Structural studies of electrospun cellulose nanofibers. Polymer 47(14): 5097-5107. https://doi.org/10.1016/j. polymer.2006.05.033.

Klemm, D., Heublein, B., Fink, H.P. & Bohn, A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie (International ed. in English) 44(22): 3358-3393. doi:10.1002/anie.200460587.

Knox, D., Klein, E., Babinsky, V. & Klein, S. 2005. Process and apparatus for coating paper. US20070148365A1.

Koslow, E. 2003. Microporous filter media, filtration systems containing same, and methods of making and using. doi:US 20030205530 A1.

Kozlowski, R., Laszkiewicz, B., Kulpinski, P., Muzyczek, M., Czarnecki, P., Rubacha, M., Niekraszewicz, B., Jedrzejczak, J. & Peczek, B. 2007. Method of manufacturing silver nanoparticles, cellulosic fibers and nanofibers containing silver nanoparticles, fibers and nanofibers containing silver nanoparticles, use of silver nanoparticles to the manufacture of cellulosic fibers and nanofibers. European Patent EP0905289.

Krässig, H.A. 1993. Cellulose: Structure, Accessibility, and Reactivity. Philadephia: Gordon and Breach Publishers.

Kundu, S., Feio, G., Pinto, L.F.V., Almeida, P.L., Figueirinhas, J.L. & Godinho, M.H. 2010. Deuterium NMR study of orientational order in cellulosic network microfibers. Macromolecules 43(13): 5749-5755. doi:10.1021/ ma100882w.

Laborie, M.P. & Brown, E. 2009. Method of in situ bioproduction and composition of bacterial cellulose nanocomposites. doi:US20090192264 A1.

Leach, M.K., Feng, Z.Q., Tuck, S.J. & Corey, J.M. 2011. Electrospinning fundamentals: optimizing solution and apparatus parameters. Journal of Visualized Experiments (47): e2494-e2494. doi:10.3791/2494.

Lee, H., Masayoshi, N., Daewon, S. & Jung, S. 2018. Control of the morphology of cellulose acetate nanofibers via electrospinning. Cellulose. https://doi.org/10.1007/s10570- 018-1744-0.

Lim, Y. & Pyo, J. 2010. Preparation of cellulose-based nanofibers using electrospinning. Intech Open. February. https://www. intechopen.com/books/nanofibers/preparation-of-cellulose-based-nanofibers-using-electrospinning.

Lisboa, U.N.D.E. 2009. Nanofibras celulósicas obtidas por electrospinning a partir 24(11).

Lisunova, M., Attila, H., Benjamin, H., Vitaliy, D. & Stephanie, R. 2010. Nanofibres of CA/PAN with high amount of carbon nanotubes by core-shell electrospinning. Composites Science and Technology 70(11): 1584-1588. https://doi.org/10.1016/j. compscitech.2010.07.001.

Lv, P., Muhammad, N., Qufu, W., Huimin, Z. & Tayyab, N. 2018. A novel in situ self-assembling fabrication method for bacterial cellulose-electrospun nanofiber hybrid structures. Polymers 10(7): 712. https://doi.org/10.3390/ polym10070712.

Magalhaes, W.L.E., Cao, X. & Lucia, A.L. 2009. Cellulose nanocrystals/Cellulose core-in-shell nanocomposite assemblies. Langmuir 25(22): 13250-13257. https://doi. org/10.1021/la901928j.

Marsh, J.T. & Wood, F.C. 1942. An Introduction to the Chemistry of Cellulose. London: Chapman & Hall. http://www.archive. org/details/introductiontoth029129mbp.

Medronho, B. & Lindman, B. 2015. Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Advances in Colloid and Interface Science 222: 502-508. doi:10.1016/j.cis.2014.05.004.

Medronho, B., Romano, A., Miguel, M.G., Stigsson, L. & Lindman, B. 2012. Rationalizing cellulose (in)solubility: Reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3): 581-587. doi:10.1007/s10570-011-9644-6.

Meier, H. 1962. Chemical and morphological aspects of the fine structure of wood. Pure App. Chem. 5: 37-52.

Miao, J., Ravindra, C., Pangule, E.E., Paskaleva, Elizabeth, E., Hwang, Ravi, S., Kane, R.J., Linhardt & Jonathan, S.D. 2011. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials 32(36): 9557-9567. https://doi.org/10.1016/j. biomaterials.2011.08.080.

Miyauchi, M., Jianjun, M., Trevor, J.S., Jonathan, S.D. & Robert, J.L. 2011. Chromatography flexible electrospun cellulose fibers as an affinity packing material for the separation of bovine serum albumin. Journal of Chromatography & Separation Techniques 2: 110. https://doi.org/10.4172/2157- 7064.1000110.

M. Sain, M. & Bhatnagar, A. 2004. Manufacturing process of cellulose nanofibers from renewable feed stocks. US 20080146701 A1.

Moon, R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. 2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941-3994. doi:10.1039/c0cs00108b.

Muhammad Hariz Othman, Mahathir Mohamed, Ibrahim Abdullah & Dahlan Haji Mohd. 2014. Preparation of non-woven fiber mats by mixture of pvc and epoxidized natural rubber. Journal of Nuclear and Related Technology 11(1): 1-10. http://www.nuklearmalaysia.org/publication/jnrt/8- jnrt/9-jnrt-volume-14-2020.

Muhammad Johan Iskandar Zahari, Noraisah Mohd Jahi, Nurul Hanisah Mohd, Ishak Ahmad, Azizah Baharum, Azwan Mat Lazim, Suria Ramli & Rizafizah Othaman. 2018. Enhanced performance of cellulose from palm oil empty fruit bunch (EFB) via acetylation and silylation. Preprints (July): 20. doi:10.20944/preprints201807.0314.v1.

Ohkawa, K. 2015. Nanofibers of cellulose and its derivatives fabricated using direct electrospinning. Molecules 20(5): 9139-9154. doi:10.3390/molecules20059139.

Oksman, K., Bondeson, D. & Syre, P. 2006. Nanocomposites based on cellulose whiskers and cellulose plastics. US20080108772A1.

Oku, Y. 2009. Flexible substrate and manufacturing method thereof. doi:US 20090202843 A1.

Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O. & Lindström, T. 2007. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6): 1934-1941. doi:10.1021/ BM061215P.

Phiriyawirut, M. & Phachamud, T. 2011. Suitable electrospinning condition for gallic acid-loaded cellulose acetate fiber. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2(3): 210

Pittarate, C., Tipaporn, Y., Walaiporn, S., Narupol, I. & Saowakon, W. 2011. Effects of poly(ethylene oxide) and ZnO nanoparticles on the morphology, tensile and thermal properties of cellulose acetate nanocomposite fibrous film. Polymer Journal 43(12): 978-986. https://doi.org/10.1038/ pj.2011.97.

Ponomarenko, A.T., Figovsky, O. & Shevchenko, V.G. 2008. Multifunctional polymer composites for structures: present state, problems, future. Advanced Materials Research 47- 50: 81-84. doi:10.4028/www.scientific.net/AMR.47-50.81.

Prasanth, R., Nageswaran, S., Kumar, V. & Ahn, J. 2015. Electrospinning of cellulose: Process and applications. In Nanocellulose Polymer Nanocomposites, edited by Thakur, V.K. Austin: Scrivener Publishing LLC. pp. 311-340.

Qinglin, W., Changtong, M., Xiuqiang, Z., Tingzhou, L., Zhen, Z. & Meichun, L. 2018. Electrospun poly(ethylene oxide) fibers reinforced with poly (vinylpyrrolidone) polymer and cellulose nanocrystals. IntechOpen 4: 53-68. https://doi.org/ http://dx.doi.org/10.5772/intechopen.76392.

Quan, S.L., Kang, S.G. & Chin, I.J. 2010. Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2): 223-230. doi:10.1007/s10570-009-9386-x.

Razali, R.A., Lokanathan, Y., Chowdhury, S.R., Saim, A. & Idrus, R.H. 2018. Physicochemical and structural characterization of surface modified electrospun PMMA nanofibre. Sains Malaysiana 47(8): 1787-1794. doi:10.17576/jsm-2018- 4708-17.

Reneker, D.H. & Yarin, A.L. 2008. Electrospinning jets and polymer nanofibers. Polymer 49(10): 2387-2425. doi:10.1016/j.polymer.2008.02.002

Rezaei, A., Ali, N. & Milad, F. 2015. Application of cellulosic nanofibers in food science using electrospinning and its potential risk application of cellulosic nanofibers in food science using electrospinning and its potential risk. Comprehensive Reviews in Food Science and Food Safety 14(3): 269-284. https://doi.org/10.1111/1541-4337.12128.

Rojas, J., Bedoya, M. & Ciro, Y. 2015. Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. Cellulose - Fundamental Aspects and Current Trends. InTech. doi:10.5772/61334.

Rosenau, T., Potthast, A. & Kosma, P. 2006. Trapping of reactive intermediates to study reaction mechanisms in cellulose chemistry. Polysaccharides II, edited by Klemm, D. Berlin Heidelberg: Springer. pp. 153-197. doi:10.1007/12_098.

Rosdi, N.H., Mohd Kanafi, N. & Abdul Rahman, N. 2018. Preparation and thermal properties of cellulose acetate/ polystyrene blend nanofibers via electrospinning technique. Pertanika Journal of Science & Technology 26(3): 979-990.

Saheb, D.N. & Jog, J.P. 1999. Natural fiber polymer composites: A review. Advances in Polymer Technology 18(4): 351-363.

Saurabh, C.K., Mustapha, A., Mohd Masri, M., Owolabi, A.F., Syakir, M.I., Dungani, R., Paridah, M.T., Jawaid, M. & Abdul Khalil, H.P.S. 2016. Isolation and characterization of cellulose nanofibers from Gigantochloa scortechinii as a reinforcement material. Journal of Nanomaterials 2016: Article ID. 4024527.

Siró, I. & Plackett, D. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3): 459-494. doi:10.1007/s10570-010-9405-y.

Stelte, W. & Sanadi, A.R. 2009. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Industrial & Engineering Chemistry Research 48(24): 11211-11219. doi:10.1021/ie9011672.

Stephen, M., Ngila, C., Moodley, B., Kindness, A., Petrik, L. & Greyling, C. 2011. Oxolane-2,5-Dione modified electrospun cellulose nanofibers for heavy metals adsorption. Journal of Hazardous Materials 192(2): 922-927. https://doi. org/10.1016/j.jhazmat.2011.06.001.

Thielemans, W. & David, R. 2011. Preparation method of phenolic resin base carbon aerogel.

Tian, Y., Min, W., Ruigang, L., Yanxiang, L., Deqian, W., Junjun, T., Rongcheng, W. & Yong, H. 2011. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydrate Polymers 83(2): 743-748. https:// doi.org/10.1016/j.carbpol.2010.08.054.

Vallejos, E., Peresin, M.S. & Rojas, O.J. 2012. All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. Journal of Polymers and the Environment 20(4): 1075-1083. doi:10.1007/s10924-012-0499-1.

Wang, B. & Sain, M. 2007. Dispersion of soybean stock-based nanofiber in a plastic matrix. Polymer International 56(4): 538-546. doi:10.1002/pi.2167

Wang, H.S., Fu, G.D. & Li, X.S. 2009. Functional polyme r ic nanof ibe r s f rom elect rospin ning. Recent Patents on Nanotechnology 3(1): 21-31. doi:10.2174/187221009787003285.

Wang, M., Guowen, M., Qing, H. & Yiwu, Q. 2012. Electrospun 1,4-DHAQ-doped cellulose nanofiber films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environ. Sci. Technol. 46(1): 367-373.

Wongsasulak, S., Manashuen, P., Jochen, W., Pitt, S. & Tipaporn, Y. 2010. Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. Journal of Food Engineering 98(3): 370-376. https://doi.org/10.1016/j. jfoodeng.2010.01.014.

Xiao, Y., Yanjuan, C., Yan, L., Binjie, X., Lantian, L., Yanggang, S. & Zhuoming, C. 2018. Electrospun natural cellulose/polyacrylonitrile nanofiber: Simulation and experimental study. Textile Research Journal. https://doi. org/10.1177/0040517518779256.

Xu-Ting, Z., Chiu, C.L., Saba, N., Syang-Peng, R. & Chang- Mou, W. 2018. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited tio2/graphene oxide. Polymers 10(7): 746. https://doi.org/10.3390/polym10070746.

Yao, L., Lee, C. & Kim, J. 2011. Electrospun meta-aramid/ cellulose acetate and meta-aramid/cellulose composite nanofibers. Fibers and Polymers 12(2): 197-206. https://doi. org/10.1007/s12221-011-0197-y.

Yazdanbakhsh, M.F., Rashidi, A., Rahimi, M.K., Khajavi, R. & Shafaroodi, H. 2018. The effect of impregnated alpha-cellulose nanofibers with ciprofloxacin hydrochloride on Staphylococcus aureus in vitro and healing process of wound in Rat. Regenerative Engineering and Translational Medicine 4(4): 247-256.

Yoshitake Yamada, Yuji Abe, Shoichi Miyawaki, Shiho Katsukawa, Hiroshi Abe, Yuko Iijima, Akira Isogai, L. 2010. Papier couché. WO 2010113805 A1.

Young-Mook, L. 2010. Preparation of cellulose-based nanofibers using electrospinning. Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Republic of Korea. doi:10.5772/8153.

Yu, J.H. 2007. Electrospinning of polymeric nanofiber materials: process characterization and unique applications. PhD Thesis. Massachusetts Institute of Technology (Unpublished).

Zeng, J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L. & Jing, X. 2003. Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release 92(3): 227-231. doi:10.1016/ S0168-3659(03)00372-9.

Zhou, J. & Zhang, L. 2000. Solubility of cellulose in NaOH/ Urea aqueous solution. Polymer Journal 32(10): 866-870. doi:10.1295/polymj.32.866.

Zimmermann, T., Bordeanu, N. & Strub, E. 2010. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers 79(4): 1086-1093. doi:10.1016/j.carbpol.2009.10.045.

 

*Pengarang untuk surat-menyurat; email: rizafizah@ukm.edu.my

 

 

 

sebelumnya