Sains Malaysiana 48(8)(2019):
1655–1660
http://dx.doi.org/10.17576/jsm-2019-4808-11
Determination of Heavy
Metals and Radionuclides in Coal and Industrial Fly Ash by Neutron Activation
Analysis (NAA) and Gamma Spectrometry
(Pengenalpastian Logam Berat dan Radionuklid pada Arang dan Abu Terbang Industri melalui Analisis Pengaktifan Neutron (NAA) dan Spektroskopi Gamma)
WADEEAH M. AL-AREQI1, AIMAN. M. BOBAKER2*, INTISAR ALAKILI2, AMRAN AB. MAJID3 & SUKIMAN SARMANI4
1Radiation Exposure and
Laboratory General Directorate, National Atomic Energy Commission (NATEC),
Sana’a, Yemen
2Chemistry Department, Faculty
of Science, University of Benghazi, Benghazi, Libya
3Nuclear Science Programme, School of Applied Physics, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4University of Kuala
Lumpur, Jalan Sultan Ismail, 50540 Kuala Lumpur,
Federal Territory, Malaysia
Diserahkan: 24 Februari 2019/Diterima: 24 Mei 2019
ABSTRACT
Coal-fired power plants
and industrial waste (IW) incinerators increasingly dispose
large amounts of fly ash that cause environmental contamination by toxic heavy
metals. This study aimed to investigate the concentration of heavy metals and
measure the specific activity of naturally occurring radioactive materials (NORM)
that remain in the fly ash of coal power plants and industrial incinerators.
Ash samples were collected from the Kapar and Jana Manjung coal-fired power plants and the Kualiti Alam industrial incinerator in Malaysia. The
concentrations of As, Ba, Co, Cr, Fe, Sb, Zn, Th and U were determined via neutron activation analysis (NAA).
Results indicated that the highest concentrations of heavy metals in Kapar and Jana Manjung coal fly
ash were 27 012 and 57 500 mg/kg for Fe and 494 and 1,119 mg/kg for Ba,
respectively, and the lowest concentrations for Sb were at 3.67 and 2.23 mg/kg,
respectively. The concentrations of Fe, Zn, Ba and Cr in industrial fly ash
were 31 0007, 7 675, 2 760 and 1,029 mg/kg, respectively. The concentrations of As, Ba, Cr, Fe and Zn were higher in industrial fly
ash than in coal fly ash. The specific activity concentrations of NORM,
namely, 40K, 226Ra, 232Th
and 238U determined by gamma spectrometry in Kapar coal fly ash were 321.65, 27.42, 134.41 and 152.71 Bq/kg, respectively. Elemental concentration results
indicated that the amounts of heavy metals depended on feed sources and
combustion temperatures. Most heavy metal contents and radionuclides in power
plant and incinerator fly ash were significantly lower or within the global
ranges.
Keywords: Fly ash;
heavy metals; naturally occurring radioactive materials (NORM);
Neutron Activation Analysis (NAA)
ABSTRAK
Loji janakuasa berasaskan arang batu dan insinerator sisa industri (IW) berterusan melepaskan sejumlah besar abu cerobong yang menyebabkan pencemaran alam sekitar disebabkan kandungan logam berat bertoksik. Kajian ini bertujuan untuk mengkaji kepekatan logam berat dan mengukur aktiviti khusus bahan radioaktif terjadi secara alami (NORM) yang masih bersisa di dalam abu cerobong dari loji janakuasa arang batu dan insinerator industri. Sampel abu telah diambil dari loji janakuasa arang batu Kapar dan Jana Manjung dan insinerator industri Kualiti Alam di Malaysia. Kepekatan As, Ba, Co, Cr, Fe, Sb, Zn, Th dan U ditentukan melalui analisis pengaktifan neutron (NAA). Keputusan menunjukkan bahawa kepekatan tertinggi logam berat dalam sisa abu cerobong di Kapar dan Jana Manjung adalah 27,012 dan 57,500 mg/kg untuk Fe dan 494 dan 1 119 mg/kg untuk Ba, dan kepekatan terendah bagi Sb adalah 3.67 dan 2.23 mg/kg. Kepekatan Fe, Zn,
Ba dan Cr dalam industri abu cerobong adalah 31,0007, 7,675, 2,760 dan 1,029 mg/kg. Kepekatan As,
Ba, Cr, Fe dan Zn adalah lebih tinggi dalam abu cerobong industri daripada abu cerobong arang batu. Kepekatan aktiviti khusus daripada NORM, iaitu 40K, 226Ra, 232Th dan 238U ditentukan oleh spektroskopi gama di abu cerobong arang batu Kapar masing-masing adalah 321.65, 27.42, 134.41 dan 152.71 Bq/kg. Kepekatan unsur menunjukkan bahawa jumlah logam berat bergantung kepada sumber bekalan dan suhu pembakaran. Kebanyakan kandungan logam berat dan radionuklid di loji janakuasa dan insinerator abu cerobong adalah lebih rendah dengan ketara atau dalam julat global.
Kata kunci: Abu cerobong; analisis pengaktifan neutron (NAA); bahan radioaktif terjadi secara alami (NORM); logam berat
RUJUKAN
Ahmaruzzaman, M.
2010. A review on the utilization of fly ash. Progress in Energy and
Combustion Science 36(3): 327-363.
Al-Areqi, W.M., Amran, Ab Majid.
& Sukiman, Sarmani.
2008. Analysis of trace elements in power plant and industrial incinerator fly
ashes by Instrumental Neutron Activation Analysis (INAA). Malaysian Journal
of Analytical Sciences 12(2): 375-379.
Bode,
P., Hoffman, E.L., Lindstrom, R.L., Parry, S.J. & Rosenberg, R.J. 1990.
Practical aspects of operating a neutron activation analysis laboratory. IAEA Techdoc. 564: 1-251.
Chang,
F.Y. & Wey, M.Y. 2006. Comparison of the characteristics of bottom and fly
ashes generated from various incineration processes. Journal of Hazardous
Materials 138(3): 594-603.
Chen,
J., Liu, G., Kang, Y., Wu, B., Sun, R., Zhou, C. & Wu, D. 2014. Coal
utilization in China: Environmental impacts and human health. Environmental
Geochemistry and Health 36(4): 735-753.
Dai,
S., Yan, X., Ward, C.R., Hower, J.C., Zhao, L., Wang,
X., Zhao, L., Ren, D. & Finkelman, R.B. 2018.
Valuable elements in Chinese coals: A review. International Geology Review 60(5-6):
590-620.
Dogan, O. & Kobya, M. 2006. Elemental analysis of trace elements in fly
ash sample of Yatağan thermal power plants using
EDXRF. Journal of Quantitative Spectroscopy and Radiative Transfer 101(1):
146-150.
Duong,
P.V., Thanh, V.T., Dien,
P.Q. & Thanh Binh, N.
1995. Application of Nuclear Activation Analysis (NAA) and low-level gamma
counting to determine the radionuclide and trace element-pollutant releases
from coal-fired power plants in Vietnam. Science of the Total Environment 173:
339-344.
Dwivedi, S., Srivastava,
S., Mishra, S., Dixit, B., Kumar, A. & Tripathi,
R.D. 2008. Screening of native plants and algae growing on fly-ash affected
areas near National Thermal Power Corporation, Tanda,
Uttar Pradesh, India for accumulation of toxic heavy metals. Journal of
Hazardous Materials 158(2-3): 359-365.
Erol, M., Küçükbayrak, S. & Ersoy-Meriçboyu,
A. 2007. Characterization of coal fly ash for possible utilization in glass
production. Fuel 86(5-6): 706-714.
Fardy, J., McOrist, G. & Farrar, Y. 1989. Neutron activation analysis
and radioactivity measurements of Australian coals and fly ashes. Journal of Radioanalytical and Nuclear Chemistry 133(2):
217-226.
Ferré-Huguet, N.,
Nadal, M., Mari, M., Schuhmacher, M., Borrajo, M.A. & Domingo, J.L. 2007. Monitoring metals
near a hazardous waste incinerator. Temporal trend in soils and herbage. Bulletin
of Environmental Contamination and Toxicology 79(2): 130-134.
Flues,
M., Camargo, I.M.C., Silva, P.S.C. & Mazzilli,
B.P. 2006. Radioactivity of coal and ashes from Figueira
coal power plant in Brazil. Journal of Radioanalytical
and Nuclear Chemistry 270(3): 597-602.
Goodarzi, F. 2006.
Characteristics and composition of fly ash from Canadian Coal-Fired Power
Plants. Fuel 85(10-11): 1418-1427.
Jegadeesan, G., Al-Abed,
S.R. & Pinto, P. 2008. Influence of trace metal distribution on its leachability from coal fly ash. Fuel 87(10-11):
1887-1893.
Kida,
A., Noma, Y. & Imada,
T. 1996. Chemical speciation and leaching properties of elements
in municipal incinerator ashes. Waste Management 16(5-6):
527-536.
Landsberger, S., Buchholz,
B.A., Kaminski, M. & Plewa, M. 1993. Trace
elements in municipal solid waste incinerator fly ash. Journal of Radioanalytical and Nuclear Chemistry 167(2): 331-340.
Malik,
M., Soni, N.K., Kanagasabapathy,
K.V., Prasad, M.V.R. & Satpathy,
K.K. 2016. Characterisation of fly ash from coal-fired thermal power
plants using energy dispersive x-ray fluorescence spectrometry.
Sci. Rev. Chem. Commun. 6(4):
91-101.
Marrero,
J., Polla, G., Rebagliati,
R.J., Gómez, R.P. & Smichowski, P. 2007.
Characterization and determination of 28 elements in fly ashes collected in a
thermal power plant in Argentina using different instrumental techniques. Spectrochimica Acta Part B: Atomic Spectroscopy 62(2): 101-108.
Meij, R. & Winkel, H.t. 2007. The emissions of heavy metals and
persistent organic pollutants from modern coal-fired power stations. Atmospheric
Environment 41(40): 9262-9272.
Mohd Annas, B.M.N.M.A. & Mohd Nor, M.A. 2005. Future coal utilization in Malaysia. In APEC
Clean Fossil Energy Technical and Policy Seminar, Cebu City Marriott Hotel,
The Philippines. pp. 26-29.
Nawaz,
I. 2013. Disposal and utilization of fly ash to protect the environment. International
Journal of Innovative Research in Science, Engineering and Technology 2(10):
5259-5266.
Orvini, E. & Pirico, R. 1995. Mass balance evaluation in power plants
using Neutron Activation Analysis (NAA). Microchemical Journal 51(1-2): 159-165.
Papaefthymiou, H., Symeopoulos, B.D. & Soupioni,
M. 2007. Neutron activation analysis and natural radioactivity measurements of
lignite and ashes from Megalopolis Basin, Greece. Journal of Radioanalytical and Nuclear Chemistry 274(1): 123-130.
Papastefanou, C. 2007. Radioactivity
of coals and fly ashes. Journal of Radioanalytical and Nuclear Chemistry 275(1): 29-35.
Querol, X., Fernández-Turiel, J. & López-Soler,
A. 1995. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74(3): 331-343.
Reijnders, L. 2005. Disposal,
uses and treatments of combustion ashes: A review. Resources, Conservation
and Recycling 43(3): 313-336.
Sijakova-Ivanova, T., Panov, Z., Blažev, K. & Zajkova-Paneva, V. 2011. Investigation of fly ash heavy
metals content and physico chemical properties from
thermal power plant, Republic of Macedonia. International Journal of
Engineering Science and Technology (IJEST) 3(12): 8219-8225.
Singh, M.K., Kumar, S.
& Ratha, D. 2016. Physiochemical and leaching
characteristics of fly and bottom ash. Energy Sources, Part A: Recovery, Utilization,
and Environmental Effects 38(16): 2377-2382.
Singh, R., Singh, R.K.,
Gupta, N.C. & Guha, B.K. 2010. Assessment of
heavy metals in fly ash and groundwater-A case study of NTPC Badarpur Thermal Power Plant, Delhi, India. Pollution
Research 29(4): 685-689.
Sushil, S. & Batra, V.S. 2006. Analysis of fly ash heavy metal content
and disposal in three thermal power plants in India. Fuel 85(17-18):
2676-2679.
Vance, D.E. &
Ehmann, W.D. 1991. Radiochemistry and Nuclear Methods of Analysis. New
York: Wiley.
*Pengarang untuk surat-menyurat; email: aiman.bobaker@uob.edu.ly
|