Sains Malaysiana 48(9)(2019): 1823–1832

http://dx.doi.org/10.17576/jsm-2019-4809-03

 

Analysis and Application of Backfill Mining in Thin Coal Seams for Preventing Building Damage

(Analisis dan Aplikasi Perlombongan Kambus Balik dalam Jalur Arang Batu Nipis untuk Mencegah Kerosakan Bangunan)

 

ERHU BAI1,2,3*, WENBING GUO1,2, MININGJIE GUO1,3, GAOZHONG LOU4 & YI TAN1,2,3

 

1School of Energy Science and Engineering, Henan Polytechnic University, 454000 Jiaozuo, Henan, China

 

2State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, 102211 Beijing, China

 

3Synergism Innovative Centre of Coal Safety Production in Henan Province, 454000 Jiaozuo, Henan, China

 

4School of Civil and Architectural Engineering, Anyang Institute of Technology, 455000 Anyang, Henan, China

 

Diserahkan: 6 November 2018/Diterima: 1 Jun 2019

 

ABSTRACT

As coal resources trapped under surface buildings impede the efficient mining of coal seams and constrain the sustainable development of coal mines, a super-high-water backfill mining technique for preventing building damage was adopted. According to the established model of equivalent mining height (EMH), the influence factors were obtained. Afterwards, a measurement to improve the backfill rate was analyzed based on the slurry fluidity. Meanwhile, the relationships between the backfill body compression and its influence factors were studied by numerical simulation. In this way, a more accurate EMH was obtained. To prove this trial practicable, the obtained EMH and the probability integral method were used to predict the surface movement and deformation of the C7401 panel. At the same time, a surface movement observation was set up to observe the mining influence on the surface ground and buildings. The comparison between the predicted and measured data indicated that they corresponded well with each other, the surface movement and deformation values were all controlled within grade I, which protected the surface buildings. Moreover, by applying the super-high-water backfill mining technique, not only building damage has been controlled within Grade I, but the impact on the ecological environment has been reduced also, such as surface subsidence, groundwater leakage and groundwater lowering, which is in harmony with the construction of green mines. The practical trial can provide a reference for mining under similar conditions and is vital for the sustainable development of the mining industry and economic growth.

 

Keywords: Backfill mining; environment protection; overburden movement; surface subsidence; thin coal seam

ABSTRAK

Disebabkan sumber arang batu terperangkap di bawah bangunan permukaan, hal ini menghalang perlombongan arang batu yang cekap dan mengekang pembangunan lestari lombong arang batu, perlombongan secara kambus balik air super-tinggi diterima pakai. Menurut model ketinggian perlombongan setara (EMH), faktor pengaruh diperoleh. Selepas itu, langkah untuk meningkatkan kadar pengisian semula dianalisis berdasarkan kecairan buburan. Sementara itu, hubungan antara mampatan badan pengisian semula dan faktor pengaruhnya dikaji secara terperinci dengan menggunakan simulasi berangka. Dengan cara ini, EMH yang lebih tepat diperoleh. Untuk membuktikan bahawa kaedah ini dapat dijalankan, EMH yang diperoleh dan kaedah integral kebarangkalian digunakan untuk meramalkan pergerakan permukaan dan canggaan panel C7401. Pada masa yang sama, pergerakan permukaan diperhatikan untuk melihat pengaruh perlombongan terhadap permukaan tanah dan bangunan. Berdasarkan perbandingan antara data yang diramalkan dengan yang diukur, ia menunjukkan bahawa mereka bersesuaian antara satu sama lain, iaitu, nilai pergerakan dan canggaan permukaan semuanya dikawal dalam gred I, yang melindungi bangunan permukaan. Lebih-lebih lagi, dengan menggunakan perlombongan sumber air super-tinggi, satu siri masalah alam sekitar ekologi yang disebabkan oleh aktiviti perlombongan dapat dikurangkan. Percubaan praktikal boleh digunakan sebagai rujukan untuk perlombongan dalam keadaan yang sama dan sangat penting untuk pembangunan lestari industri perlombongan dan pertumbuhan ekonomi.

 

Kata kunci: Jalur arang nipis; penenggelaman permukaan; pergerakan tanah beban; perlindungan persekitaran; perlombongan pengisian semula

RUJUKAN

Bai, E.H., Guo, W.B. & Tan, Y. 2019. Negative externalities of high-intensity mining and disaster prevention technology in China. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-019-01468-4.

Bai, E.H., Guo, W.B., Tan, Y. & Yang, D.M. 2018a. Green coordinated mining technology of strip mining roadway backfilling method. Journal of China Coal Society 43(S1): 21-27.

Bai, E.H., Guo, W.B., Tan, Y. & Yang, D.M. 2018b. The analysis and application of granular backfill material to reduce surface subsidence in China’s Northwest coal mining area. Plos ONE 13(7): e0201112.

Bell, F.G. & Genske, D.D. 2001. The influence of subsidence attributable to coal mining on the environment, development and restoration: some examples from western Europe and South Africa. Environmental & Engineering Geoscience 7(1): 81-99.

Bian, Z.F., Miao, X.X., Lei, S.G., Chen, S.E., Wang, W.F. & Struthers, S. 2012. The challenges of reusing mining and mineral-processing wastes. Science 337: 702-703.

Chang, Q.L., Chen, J.H., Zhou, H.Q. & Bai, J.B. 2014. Implementation of paste backfill mining technology in Chinese coal mines. The Scientific World Journal 2014: 821025.

Chen, S.Z., Lai, G.T., Han, L. & Tovele, G.S.V. 2019. Effects of tectonic stresses and structural planes on slope deformation and stability at the Buzhaoba Open Pit Mine, China. Sains Malaysiana 48(2): 317-324.

Dai, H.Y., Lian, X.G., Liu, J.Y., Liu, Y.X., Zhou, Y.M., Deng, W.N. & Cai, Y.F. 2010. Model study of deformation induced by fully mechanized caving below a thick loess layer. International Journal of Rock Mechanics & Mining Sciences 47(6): 1027-1033.

Feng, G.M. 2009. Research on the super-high water packing material and filling mining technology and their application. Ph.D. Thesis, China University of Mining and Technology, Xuzhou (Unpublished).

Guo, W.B. 2013. Mining Damage and Protection. China Coal Industry Publishing House: Beijing, China.

Guo, G.L., Zhu, X.J. & Zha, J.F. 2014. Subsidence prediction method based on equivalent mining height theory for solid backfilling mining. Transactions of Nonferrous Metals Society of China 24(10): 3302-3308.

Guo, W.B. & Xu, F.Y. 2016. Numerical simulation of overburden and surface movements for Wongawilli strip pillar mining. International Journal of Mining Science and Technology 26(1): 71-76.

Guo, W.B., Bai, E.H., Tan, Y. & Yang, D.M. 2017. Surface movement characteristics caused by fully-mechanized top coal caving mining under thick collapsible loess. Electronic Journal of Geotechnical Engineering 22(3): 1107-1116.

Guo, W.J., Wang, H.L. & Chen, S.J. 2016. Coal pillar safety and surface deformation characteristics of wide strip pillar mining in deep mine. Arabian Journal of Geosciences 9(2): 1-9.

Huang, Y.L., Zhang, J.X., Zhang, Q. & Nie, S.J. 2011. Backfilling technology of substituting waste and fly ash for coal underground. Environmental Engineering and Management Journal 10(6): 769-775.

Hsieh, C., Shih, T., Hu, J., Tung, H., Huang, M. & Angelier, J. 2011. Using differential SAR interferometry to map land subsidence: A case study in the Pingtung Plain of SW Taiwan. Natural Hazards 58(3): 1311-1332.

Kostecki, T. & Spearing, A.J.S. 2015. Influence of backfill on coal pillar strength and floor bearing capacity in weak floor conditions in the Illinois Basin. International Journal of Rock Mechanics and Mining Sciences 76: 55-67.

Lin, B.Q. & Liu, J.H. 2010. Estimating coal production peak and trends of coal imports in China. Energy Policy 38(1): 512-519.

Ma, C.Q., Li, H.Z. & Zhang, P.P. 2017. Subsidence prediction method of solid backfilling mining with different filling ratios under thick unconsolidated layers. Arabian Journal of Geosciences 10: 511.

Miao, X.X. & Zhang, J.X. 2007. Analysis of strata behavior in the process of coal mining by gangue backfilling. Journal of Mining & Safety Engineering 24(4): 379-382.

Rendana, M., Rahim, S.A., Idris, W.M.R., Lihan, T. & Rahman, Z.A. 2017. Soil erosion assessment in Tasik Chini Catchment using remote sensing and GIS techniques. Sains Malaysiana 46(4): 529-535.

Sun, Q., Zhang, J.X., Zhang, Q. & Zhao, X. 2017. Analysis and prevention of geo-environmental hazards with high-intensive coal mining: A case study in China’s Western eco-environment frangible area. Energies 10(6): 786.

Szcepanska, J. & Twardowska, I. 1999. Distribution and environmental impact of coal mining wastes in upper Silesia, Poland. Environmental Geology 38(3): 249-258.

Wang, X.L., Qin, Q.R. & Fan, C.H. 2017. Failure characteristic and fracture evolution law of overburden of thick coal in fully mechanized sub-level caving mining. Sains Malaysiana 46(11): 2041-2048.

Xu, S.Y., Shen, S., Cai, Z.Y. & Zhou, G.Y. 2008. The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Natural Hazards 45(1): 123-135.

Zhang, J.X., Deng, X.J., Zhao, X. & Li, B.Y. 2016. Effective control and performance measurement of solid waste backfill in coal mining. International Journal of Mining, Reclamation and Environment 31(2): 91-104.

Zhang, J.X., Zhang, Q., Sun, Q., Gao, R., Germain, D. & Abro, S. 2015. Surface subsidence control theory and application to backfill coal mining technology. Environmental Earth Sciences 74(2): 1439-1448.

Zhang, J.X., Jiang, H.Q., Deng, X.J. & Ju, F. 2014. Prediction of the height of the water-conducting zone above the mined panel in solid backfill mining. Mine Water and the Environment 33(4): 317-326.

Zhang, Z.Y., Feng, T.T. & Meng, H.M. 2015. Discussion on the method for determination of compression ratio of filling body with strip mining. The Chinese Journal of Geological Hazard and Control 26(3): 101-106.

Zhao, B.Z., Yu, X.Y. & Yin, S.X. 2004. Method of reducing damage for bolting overlying strata and harmonic extraction under buildings. Journal of Xian University of Science & Technology 24(1): 5-8.

 

*Pengarang untuk surat-menyurat; email: 111502010003@home.hpu.edu.cn

 

 

 

sebelumnya