Sains Malaysiana 48(9)(2019): 1887–1897
http://dx.doi.org/10.17576/jsm-2019-4809-09
Polymers
Encapsulated Aspirin Loaded Silver Oxide Nanoparticles: Synthesis,
Characterization and its Bio-Applications
(Aspirin Terkurung Polimer Dimuatkan Nanozarah Perak Oksida: Sintesis,
Pencirian dan Bio-Penggunaan)
SHABIR
AHMAD1,
HIRA
RASHID1,
QUDISA
JALIL1,
SIDRA
MUNIR1,
BARKATULLAH2,
SULAIMAN
KHAN1,
RIAZ
ULLAH3*,
ABDELAATY
A.
SHAHAT3,4,
HAFIZ
M.
MAHMOOD5,
ALMOQBIL
A.
NASER
ABDULLAH A-MISHARI 3 & AHMAD BARI6
1Department
of Chemistry, Islamia College University, Peshawar, KPK,
Pakistan
2Department
of Botany, Islamia College University, Peshawar, KPK,
Pakistan
3Medicinal
Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud
University, Riyadh, Saudi Arabia
4Department
of Phytochemistry, National Research Centre, 33 EI Bohouth St., 12622, Dokki,
Giza, Egypt
5Department
of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi
Arabia
6Central
Lab, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Diserahkan: 20
Januari 2019/Diterima: 18 Jun 2019
ABSTRACT
Simple, facile and cost
effective approach is used for the synthesis of Aspirin based silver oxide
nano-particles (SONPs) by chemical wet method. The
synthesized SONPs were loaded with Aspirin to form Asp-SONPs,
which was confirmed with the help of UV spectroscopy.
Characterization was done using spectroscopy techniques FTIR, SEM, TEM and XRD. Antimicrobial assay of Asp-SONPs
were carried out against six bacterial strains (E.
coli, Protues, Vibrio, Citrobacter, Enterobacter, S. aureus) and fungal
strains (Curvularia, Alternaria, Rhizopus, Aspergillus, Helmithosporium,
Paecilomyces) by well diffusion method which confirmed its potential
application as an antimicrobial agent. Asp-SONPs-PVA also
displayed highest insecticidal activity against both tested insects (Tribolium
casterium and Callosobruchus chinensis) having LC50 value
of 15.917, and 37.6365 and highest percent mortality at 1000 ppm was 67%, and
73%, respectively. PVA coated SONPs
displayed encouraging phytotoxicity when exposed to allopathic, where Asp-SONPs
coated PVA give excellent anthelmintic activity by killing or
paralyzing all the species (earthworm) at 1000 ppm.
Keywords:
Antimicrobial; antioxidant; aspirin; insecticidal; nanoparticles
ABSTRAK
Pendekatan yang mudah
dan berkesan digunakan untuk mensintesis Aspirin berasaskan nanozarah
perak beroksida (SONPs) dengan menggunakan kaedah kimia basah. SONPs
tersintesis dengan Aspirin untuk membentuk Asp-SONPs,
yang dikenal pasti dengan menggunakan Spektroskopi UV.
Pencirian telah dilakukan menggunakan teknik spektroskopi iaitu
FTIR,
SEM,
TEM
dan XRD. Cerakinan antimikrob Asp-SONPs
telah dijalankan terhadap enam strain bakteria (E. coli,
Protues, Vibrio, Citrobacter, Enterobacter, S. aureus) dan strain
kulat (Curvularia, Alternaria, Rhizopus, Aspergillus, Helmithosporium,
Paecilomyces) dengan menggunakan kaedah resapan yang mengesahkan
aplikasinya yang berpotensi sebagai agen antimikrob. Asp-SONPs-PVA
juga menunjukkan aktiviti insektisid yang tertinggi
terhadap kedua-dua serangga yang diuji (Tribolium casterium
dan Callosobruchus chinensis) yang mempunyai nilai LC50 iaitu 15.917 dan 37.6365 dan peratus
kematian tertinggi pada 1000 ppm masing-masing adalah 67% dan 73%.
SONPs
bersalut PVA menunjukkan kefitotoksikan menggalakkan apabila terdedah
kepada alopati dengan Asp-SONPs bersalut PVA memberi
aktiviti antelmin cemerlang dengan membunuh atau melumpuhkan semua
spesies (cacing tanah) pada 1000 ppm.
Kata kunci: Antimikrob; antioksidan; aspirin; insektisid;
nanozarah
RUJUKAN
Ahmad,
S., Ullah, R., Naser M. AbdElsalam, Hassan, F., Ahtaram, B., Muhammad, T.J.,
Anwar, A.S. & Muhammad, A. 2014. One new royleanumoate from Teucrium
royleanum Wall. ex Benth. The Scientific World Journal 2014: 581629.
Alaqad,
K. & Saleh, T.A. 2016. Gold and silver nanoparticles: Synthesis methods,
characterization routes and applications towards drugs. J. Environ. Anal.
Toxicol. 6: 384.
Ali-Shtayeh,
M. & Abu, G.S.I. 1999. Antifungal activity of plant extracts against
dermatophytes. Mycoses 42(11-12): 665-672.
Balouiri,
M., Sadiki, M. & Ibnsouda, S.K. 2016. Methods for in vitro evaluating
antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2):
71-79.
Bindhu,
M. & Umadevi, M. 2015. Antibacterial and catalytic activities of green
synthesized silver nanoparticles. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 135: 373-378.
Chiguvare,
H., Opeoluwa, O.O., Reuben, M., Olukayode, A., Idris, A.O., Adebola, O.O.,
Benedicta, N.N., Sandile, P.S., Sneha, M. & Oluwatobi, S.O. 2016. Synthesis
of silver nanoparticles using buchu plant extracts and their analgesic
properties. Molecules 21: 774.
Choi,
J.S., Lee, H., Park, Y.K., Kim, S.J., Kim, B.J., An, K.H., Kim, B.H. &
Jung, S.C. 2016. Application of silver and silver oxide nanoparticles
impregnated on activated carbon to the degradation of bromate. Journal of
Nanoscience and Nanotechnology 16(5): 4493-4497.
Dhoondia,
Z.H. & Chakraborty, H. 2012. Lactobacillus mediated synthesis of silver
oxide nanoparticles. Nanomaterials and Nanotechnology https://doi.org/10.5772/55741.
Dinesh,
D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Kumar, P.M., Nicoletti,
M., Jiang, W., Benelli, G., Chandramohan, B. & Suresh, U. 2015.
Mosquitocidal and antibacterial activity of green-synthesized silver
nanoparticles from Aloe vera extracts: Towards an effective tool against
the malaria vector Anopheles stephensi? Parasitology Research 114(4):
1519-1529.
El
Kassas, H.Y. & Attia, A.A. 2014. Bactericidal application and cytotoxic
activity of biosynthesized silver nanoparticles with an extract of the red
seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac.
J. Cancer Prev. 15(3): 1299-1306.
Fang,
J., Zhong, C. & Mu, R. 2005. The study of deposited silver particulate
films by simple method for efficient SERS. Chemical Physics Letters 401:
271-275.
Galya,
T., Vladimir, S., Ivo, K., Radko, N., Jana, S. & Petr, S. 2008.
Antibacterial poly (vinyl alcohol) film containing silver nanoparticles:
Preparation and characterization. Journal of Applied Polymer Science 110(5):
3178-3185.
Gurunathan,
S., Han, J.W., Eppakayala, V., Jeyaraj, M. & Kim, J.H. 2013. Cytotoxicity
of biologically synthesized silver nanoparticles in MDA-MB-231 human breast
cancer cells. BioMed Research International 2013: 535796.
Hosseinpour-Mashkani,
S.M. & Ramezani, M. 2014. Silver and silver oxide nanoparticles: Synthesis
and characterization by thermal decomposition. Materials Letters 130:
259-262.
Morones, J.R., Jose,
L.E., Alejandra, C., Katherine, H., Juan, B.K., Jose, T.R.I. & Miguel, J.Y.
2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):
2346-2353.
Moukrad, N., Fouzia, R.F., Ikram, D. & Omar, Z. 2014. Phytotoxic
activity of the zinc oxyde nanoparticles synthesized from different
precursors on germination and radicle growth of seeds Lepidium sativum.
International Journal of Scientific and Research Publications 4(12): 1-6.
Priya,
S. & Santhi, S. 2015. Biosynthesis and in vitro anthelmintic
activity of silver nanoparticles using aqueous leaf extracts of Azadirachta
indica. World Journal of Pharmacy and Pharmaceutical Sciences 4(10):
2105-2116.
Rafique,
M., Sadaf, I., Shahid Rafique, M. & Bilal Tahir, M. 2016. A review on green
synthesis of silver nanoparticles and their applications. Artificial Cells,
Nanomedicine, and Biotechnology 45(7): 1272-1291.
Siddiqui,
M.R.H., Adil, S.F., Assal, M.E., Roushown, Ali. & Al- Warthan, A. 2013. Synthesis
and characterization of silver oxide and silver chloride nanoparticles with
high thermal stability. Asian J. Chem. 25(6): 3405-3409.
Sondi,
I. & Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: A
case study on E. coli as a model for Gram-negative bacteria. Journal
of Colloid and Interface Science 275(1): 177-182.
Sudha,
A., Jeyakanthan, J. & Srinivasan, P. 2017. Green synthesis of silver
nanoparticles using Lippia nodiflora aerial extract and evaluation of
their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient
Technologies 3(4): 506-515.
Ullah,
S., Ibrar, M. & Muhammad, N. 2013. Pharmacognostic, larvicidal and
phytotoxic profile of Coleus forskohlii and Rosmarinus officinalis. Journal of Pharmacognosy and Phytotherapy 5(4): 59-63.
Velammal,
S.P., Devi, T.A. & Amaladhas, T.P. 2016. Antioxidant, antimicrobial and
cytotoxic activities of silver and gold nanoparticles synthesized using Plumbago
zeylanica bark. Journal of Nanostructure in Chemistry 6(3): 247-260.
Velayutham,
K. & Ramanibai, R. 2016. Larvicidal activity of synthesized silver
nanoparticles using isoamyl acetate identified in Annona squamosa leaves
against Aedes aegypti and Culex quinquefasciatus. The Journal
of Basic & Applied Zoology 74: 16-22.
Velayutham,
K., Rahuman, A.A., Rajakumar, G., Roopan, S.M., Elango, G., Kamaraj, C.,
Marimuthu, S., Santhoshkumar, T., Iyappan, M. & Siva, C. 2013. Larvicidal
activity of green synthesized silver nanoparticles using bark aqueous extract
of Ficus racemosa against Culex quinquefasciatus and Culex
gelidus. Asian Pacific Journal of Tropical Medicine 6(2): 95-101.
Yong,
N.L., Ahmad, A. & Mohammad, A.W. 2013. Synthesis and characterization of
silver oxide nanoparticles by a novel method. Int. J. Sci. Eng. Res. 4:
155-158.
*Pengarang untuk surat-menyurat;
email: rullah@ksu.edu.sa
|