Sains Malaysiana 48(9)(2019):
1937–1946
http://dx.doi.org/10.17576/jsm-2019-4809-15
Effect of
N-Acetylcysteine Supplementation on Oxidative Stress-Mediated Cryoinjury of
Bone Marrow Derived-Hematopoietic Stem Cells
(Kesan Suplementasi
N-Asetilsistein ke atas Kecederaan Krio Aruhan Tekanan Oksidatif pada Sel
Tunjang Hematopoetik Pencilan Sumsum Tulang)
SHAWAL MARADONA ABDUL WAHAB, ZARIYANTEY ABD HAMID*, RAMYA DEWI MATHIALAGAN
& IZATUS SHIMA TAIB
Biomedical
Science Programme, Centre for Health & Applied Sciences, Faculty of Health
Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300
Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 18
Februari 2019/Diterima: 19 Jun 2019
ABSTRACT
Hematopoietic stem
cells (HSCs) transplantation was introduced as curative
treatment for various diseases. Cryopreservation of HSCs
is crucial for long term storage and maintenance of cellular quality; however,
it has been reported that cryopreservation itself causes oxidative
stress-driven apoptosis and cell loss. This study investigated impact of
supplementing N-acetylcysteine (NAC) as antioxidant during
cryopreservation on viability and oxidative stress in HSCs. HSCs
were isolated from murine bone marrow, cultured in HSCs
growth media and cryopreserved (1×106 cells per vial) together with
10% DMSO and NAC (0, 0.25, 0.5 or 2.0
μM) for 48 h, 2 weeks or 8 weeks at -196°C using controlled-rate-freezing
technique. Cell viability and oxidative stress in cryopreserved cells were
analysed at each time-point. Cell viability was significantly reduced (p<0.05) following cryopreservation as compared to
pre-cryopreservation. NAC supplementation significantly
increased cell viability (p<0.05) after 48 h cryopreservation at 0.5
μM and 2.0 μM and after 2 weeks cryopreservation at 0.25 μM
compared to the controls. Cryopreservation significantly enhanced GSH level
(p<0.05) and reduced MDA level (p<0.05)
without affecting SOD activity and PC level
in HSCs compared to pre-cryopreservation. NAC supplementation
significantly increased GSH level at 0.25 μM in
cryopreserved HSCs compared to control. In conclusion, NAC supplementation
during cryopreservation showed potential in minimizing cryoinjury by promoting
cell viability, increasing antioxidant capacity and reducing oxidative damage
in HSCs, however these effects are influenced by both
durations of cryopreservation and NAC concentration.
Keywords:
Cryopreservation; hematopoietic stem cells; N-acetylcysteine; oxidative stress
ABSTRAK
Pemindahan sel stem hematopoietik
(SSH) telah diperkenalkan sebagai rawatan
pelbagai penyakit. Pengawetan krio SSH adalah
penting untuk penyimpanan dan pemeliharaan kualiti SSH,
namun pengawetan krio dilaporkan berupaya mengaruh apoptosis dan
penurunan keviabelan sel akibat tekanan oksidatif. Kajian ini telah
mengkaji kesan suplementasi N-asetilsistien (NAC) sebagai antioksidan semasa
pengawetan krio terhadap keviabelan dan tekanan oksidatif SSH.
SSH diisolasi daripada sum-sum tulang mencit, dikulturkan di dalam
media pengkulturan SSH
dan seterusnya diawet krio (1×106 sel
per vial) dengan penambahan 10% DMSO dan NAC (0
μM, 0.25 μM, 0.5 μM atau 2.0 μM) selama 48 jam,
2 minggu atau 8 minggu pada suhu -196°C. Keviabelan sel dan
tekanan oksidatif ditentukan ke atas SSH pada setiap tempoh pengawetan krio. Keviabelan sel menurun
secara signifikan (p<0.05) selepas pengawetan
krio berbanding dengan pra-pengawetan krio. Suplementasi NAC
telah meningkatkan keviabelan sel secara ketara (p<0.05)
selepas pengawetan krio selama 48 jam pada kepekatan 0.5 μM
dan 2.0 μM dan juga selepas 2 minggu pengawetan krio pada kepekatan
0.25 μM berbanding kawalan. Pengawetan krio memberi kesan peningkatan
aras GSH (p<0.05)
dan penurunan aras MDA (p<0.05) tanpa memberi
kesan yang signifikan terhadap aras SOD dan PC berbanding
pra-pengawetan krio. Suplementasi NAC meningkatkan aras GSH
secara signifikan (p<0.05) pada kepekatan
0.25 μM dalam SSH yang
dikrio awet berbanding kawalan. Secara kesimpulannya, suplementasi
NAC
semasa pengawetan krio berpotensi meningkatkan keviabelan
sel dan kapasiti antioksidan serta mengurangkan kesan kerosakan
oksidatif, tetapi kesan ini adalah dipengaruhi oleh jangka masa
pengawetan krio dan kepekatan NAC yang
digunakan.
Kata kunci: N-asetilsistien; pengawetan krio; sel stem hematopoietik;
tekanan oksidatif
RUJUKAN
Abdel-Wahab,
W.M. & Moussa, F.I. 2019. Neuroprotective effect of N-acetylcysteine
against cisplatin-induced toxicity in rat brain by modulation of oxidative
stress and inflammation. Drug Des. Devel. Ther. 11(13): 1155-1162.
Ali,
F., Khan, M., Khan, S.N. & Riazuddin, S. 2016. N-Acetyl cysteine protects
diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced
injury: A novel hypothesis for autologous stem cell transplantation. J.
Chin. Med. Assoc. 79(3): 122-129.
Abdul
Hamid, Z., Hii, W., Lin, L., Abdalla, B.J., Yuen, O.B., Latif, E.S., Mohamed,
J., Nor Fadilah, R., Wah, C.P., Muhd Khairul Akmal, W.H. & Siti Balkis, B.
2014. The role of Hibiscus sabdariffa L. (Roselle) in maintenance of ex
vivo murine bone marrow-derived hematopoietic stem cells. The Scientific
World Journal 2014: 258192.
Abdul
Hamid, Z., Tan, H.Y., Chow, P.W., Harto, K.A.W., Chan, C.Y. &
Mohamed, J. 2018. The role of N-acetylcysteine supplementation on
the oxidative stress levels, genotoxicity and lineage commitment
potential of ex vivo murine haematopoietic stem/progenitor
cells. Sultan Qaboos University Medical Journal 18(5): 130-136.
Berniakovich,
I., Laricchia-Robbio, L., Carlos, J. & Izpisua Belmonte, J.C.
2012. N-acetylcysteine protects induced pluripotent stem cells from
in vitro stress: Impact on differentiation outcome. Int.
J. Dev. Biol. 56(9): 729-735.
Berz,
D., McCormack, E.M., Winer, E.S., Colvin, G.A. & Quesenberry, P.J. 2017.
Cryopreservation of hematopoietic stem cells. American Journal of Hematology 82(6): 463-472.
Birben,
E., Sahiner, U.M., Sackesen, C., Erzurum, S. & Kalayci, O. 2012. Oxidative
stress and antioxidant defense. World Allergy Organization Journal 5(1):
9-19.
Boltz-Nitulescu,
G., Wiltschke, C., Holzinger, C., Fellinger, A., Scheiner, O., Gessl, A. &
Förster, O. 1987. Differentiation of rat bone marrow cells into macrophages
under the influence of mouse L929 cell supernatant. Journal of Leukocyte
Biology 41(1): 83-91.
Bounous,
G. & Molson, H.J. 2003. The antioxidant system. Anticancer Research 23:
1411-1416.
Bucak,
M.N., Sarıözkan, S., Tuncer, P.B., Ulutaş, P.A. & Akçadağ,
H.İ. 2009. Effect of antioxidants on microscopic semen parameters, lipid
peroxidation and antioxidant activities in Angora goat semen following
cryopreservation. Small Ruminant Research 81: 90-95.
Copelan,
E.A. 2006. Hematopoietic stem-cell transplantation. The New England Journal
of Medicine 354(17): 1813-1826.
Chin,
Y.C., Abdul Hamid, Z., Taib, I.S., Hui, T., Muhd Khairul Akmal, W.H. &
Chow, P.W. 2018. Effects of n-acetyl-cysteine supplementation on ex vivo clonogenicity
and oxidative profile of lineage-committed hematopoietic stem cells. Jurnal
Teknologi DOI: https://doi.org/10.11113/jt.v80.11419.
Dalle-donne,
I., Rossi, R., Giustarini, D., Milzani, A. & Colombo, R. 2003. Protein
carbonyl groups as biomarkers of oxidative stress. Clinica Chimica Acta 329:
23-38.
Djuwantono,
T., Wirakusumah, F.F., Achmad, T.H., Sandra, F., Halim, D. & Faried, A.A.
2011. Comparison of cryopreservation methods: Slow-cooling vs rapid-cooling
based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of
human umbilical cord blood mononucleated cells. BMC Research Notes 4:
371.
Fadilah,
S.A.W., Leong, C.F. & Cheong, S.K. 2008. Stem cell transplantation in
Malaysia and future directions. Medical Journal Malaysia 63(4): 279-280.
Fan,
J., Cai, H., Yang, S., Yan, L. & Tan, W. 2008. Comparison between the
effects of normoxia and hypoxia on antioxidant enzymes and glutathione redox
state in ex vivo culture of CD34 + cells. Comparative Biochemistry
and Physiology, Part B 151: 153-158.
Fatima,
A., Rehman Qadir, A.U., Fatima, N. & Wajid, N. 2017. The effect of N-acetyl
cysteine on H2O2 mediated oxidative stress in Whartonʼs jelly derived
mesenchymal stem cells. Adv. Life Sci. 4(4): 137-142.
Hatzimichael,
E. & Tuthill, M. 2010. Hematopoietic stem cell transplantation. Stem
Cell and Cloning: Advances and Applications 3: 105-117.
Isachenko,
E., Isachenko, V., Katkov, I.I., Dessole, S. & Nawroth, F. 2013.
Vitrification of mammalian spermatozoa in the absence of cryoprotectants: From
past practical difficulties to present success. Reproductive Biomedicine
Online 6: 191-200.
Irabbasi,
E.P., Hahar, S.S., Anaf, Z.A.M., Ajab, N.F.R. & Anap, R.A.M. 2016. Efficacy
of ascorbic acid (Vitamin C) and/n-acetylcysteine (NAC) supplementation on
nutritional and antioxidant status of male Chronic Obstructive Pulmonary
Disease (COPD) patients. Journal of Nutritional Science and Vitaminology 62:
54-61.
Kelly,
S.G. 1998. Clinical applications of n-acetylcysteine. Alternative Medicine
Review 3(2): 114-127.
Kotahri,
S., Thompson, A., Agarwal, A. & du Plessis, S.S. 2010. Free radicals: Their
beneficial and detrimental effects on sperm function. Indian Journal of
Experimental Biology 48(5): 425-435.
Liu,
A.M., Qu, W.W., Liu, X. & Qu, C. 2012. Chromosomal instability in in
vitro cultured mouse hematopoietic cells associated with oxidative stress. Aerican
Journal of Blood Research 2(1): 71-76.
Limaye,
L.S. 1997. Bone marrow cryopreservation: Improved recovery due to
bioantioxidant additives in the freezing solution. Stem Cells 15:
353-358.
Maheshwari,
A., Misro, M.M., Aggarwal, A., Sharma, R.K. & Nandan, D. 2011.
N-acetyl-L-cysteine counteracts oxidative stress and prevents H2O2 induced germ cell apoptosis through down-regulation
of caspase-9 and JNK/c-Jun. Mol Reprod Dev 78(2): 69-79.
Maraldi,
T., Angeloni, C., Giannoni, E. & Sell, C. 2015. Reactive oxygen
species in stem cells. Oxid. Med. Cell Longev. 2015: 159080.
Martacic,
J., Kovacevic, M., Suncica, F., Zorica, B., Tamara, C. & Arsic, P.A. 2018.
N-acetyl-l-cysteine protects dental tissue stem cells against oxidative stress in
vitro. Clinical Oral Investigations 22(8): 2897-2903.
Matsumoto, Y., Iwasaki, H. & Suda, T. 2011. Maintenance
of adult stem cells: Role of the stem cell niche. In Adult Stem Cells: Stem
Cell Biology and Regenerative Medicine, edited by Phinney, D. Totowa:
Humana Press. pp. 35-55.
Motta,
J.P.R., Gomes, B.E., Bouzas, L.F., Paraguassu- Braga, F.H. & Porto, L.C.
2010. Evaluations of bioantioxidants in cryopreservation of umbilical cord
blood using natural cryoprotectants and low concentrations of
dimethylsulfoxide. Cryobiology 60: 301-307.
Ng,
A.P. & Alexander, W.S. 2017. Haematopoietic stem cells: Past, present and
future. Cell Death Discovery 3: 17002.
Orrenius,
S., Gogvadze, V. & Zhivotovsky, B. 2007. Mitochondrial oxidative stress:
Implications for cell death. Annual Review of Pharmacology and Toxicology 47(1):
143-183.
Pal,
R., Hanwate, M. & Totey, S.M. 2008. Effect of holding time, temperature and
different parenteral solutions on viability and functionality of adult bone
marrow-derived mesenchymal stem cells before transplantation. Journal of
Tissue Engineering and Regenerative Medicine 2(7): 436-444.
Panch,
S.R., Szymanski, J., Savani, B.N. & Stroncek, D.F. 2017. Sources of
hematopoietic stem and progenitor cells and methods to optimize yields for
clinical cell therapy. Biology of Blood and Marrow Transplantation 23(8):
1241-1249.
Reubinoff,
B.E., Pera, M.F., Vajta, G. & Trounson, A.O. 2001. Effective
cryopreservation of human embryonic stem cells by open pulled straw
vitrification method. Human Reproduction 16(10): 2187-2194.
Rocha,
V. & Gluckman, E. 2006. Clinical use of umbilical cord blood hematopoietic
stem cells. Biology of Blood and Marrow Transplantation 12(1): 34-41.
Rowley,
S.D. 1992. Hematopoietic stem cell cryopreservation: A review of current techniques. Journal of Hematotherapy 250(1): 233-250.
Samuni,
Y., Goldstein, S., Dean, O.M. & Berk, M. 2013. The chemistry and biological
activities of N-acetylcysteine. Biochim. Biophys. Acta 1830(8):
4117-4129.
Sasnoor,
L.M., Kale, V.P. & Limaye, L. 2003. Supplementation of conventional
freezing medium with a combination of catalase and trehalose results in better
protection of surface molecules and functionality of hematopoietic cells. Journal
of Hematotherapy & Stem Cell Research 12: 553-564.
Seita,
J. & Weissman, I.L. 2010. Hematopoietic stem cell: Self-renewal versus
differentiation. Wiley Interdisipline Review Systems Biology and Medicine 2(6):
640-653.
Shaban,
S., El-husseny, M.W.A., Abushouk, A.I., Muhammad, A., Salem, A., Mamdouh, M.
& Abdel-daim, M.M. 2017. Effects of antioxidant supplements on the survival
and differentiation of stem cells. Oxidative Medicine and Cellular Longevity 13: 1-16.
Tatone,
C., Di Emidio, G., Vento, M., Ciriminna, R. & Artini, P.G. 2010.
Cryopreservation and oxidative stress in reproductive cells. Gynecological
Endocrinology 26(8): 563-567.
Vosganian,
G.S., Waalen, J., Kim, K., Jhatakia, S., Schram, E., Lee, T., Riddell, D. &
James, R.M. 2012. Effects of long-term cryopreservation on peripheral blood
progenitor cells. Cytotherapy 14(10): 1228-1234.
Zhou,
C.Q. 2004. Cryopreservation of human embryonic stem cells by vitrification. Chin.
Med. J. (Engl) 117: 1050-1055.
*Pengarang untuk
surat-menyurat; email: zyantey@ukm.edu.my
|