Sains Malaysiana 49(10)(2020): 2411-2424
http://dx.doi.org/10.17576/jsm-2020-4910-07
Morpho-Physiological
and Anatomical Character Changes of Rice Under Waterlogged and Water-Saturated
Acidic and High Fe Content Soil
(Morfo-Fisiologi dan Perubahan Ciri Anatomi Padi di bawah Pengelogan Air dan Tanah Air Tepu Berasid serta Tinggi Kandungan Fe)
T.
TURHADI1, H. HAMIM1, MUNIF GHULAMAHDI2 &
M. MIFTAHUDIN1*
1Plant Biology
Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences-Bogor,
Agricultural University (IPB University), Kampus IPB Dramaga, 16680 Bogor, Indonesia
2Department of
Agronomy and Horticulture, Faculty of Agriculture-Bogor Agricultural, University
(IPB University), Kampus IPB Dramaga,
16680 Bogor, Indonesia
Diserahkan: 30 Januari 2020/Diterima: 9 Mei 2020
ABSTRACT
Waterlogging
is one of the limiting factors in crop cultivation. Moreover, high iron (Fe)
content in acidic soils could also disturb plant growth. However, there is
limited scientific information of morpho-physiological and anatomical responses
of rice grown in waterlogged acidic soils with high Fe. Therefore, the
objective of the research was to investigate the morpho-physiological and
anatomical responses of rice to waterlogged and water-saturated soil condition in acidic soil with high Fe.
Morpho-physiological and anatomical characters of rice were evaluated. The
results showed that the waterlogging in acidic and high Fe content soil
disturbed the rice growth as indicated by the change of morpho-physiological and anatomical characters. The water-saturated soil showed better condition for rice
cultivation than that of waterlogging. The plant biomass, root anatomical,
lipid peroxidation level, Fe absorption,
and leaf gas exchange parameter could be evidences of changes in rice under
both conditions. Based on the waterlogging tolerance coefficient (WTC), we
proposed shoot and root dry weight, cortex
thickness, and Fe content in shoot as screening tools for waterlogging
tolerance of rice in acidic and high Fe content soil. The finding offers
insight about waterlogged condition in acidic and high Fe soil could be
restored in crop cultivation.
Keywords: Leaf gas
exchange; root anatomical;
waterlogging; water-saturated
ABSTRAK
Pengelogan air merupakan salah satu faktor pembatasan dalam penuaian tanaman. Selain itu, kandungan besi (Fe) yang tinggi dalam tanah yang berasid juga boleh mengganggu pertumbuhan tanaman. Namun, terdapat maklumat saintifik yang terhad berkenaan morfo-fisiologi dan tindak balas anatomi terhadap pertumbuhan padi di kawasan tanah berasid pengelogan air dengan kandungan Fe yang tinggi. Oleh itu, objektif kajian ini adalah untuk mengkaji morfo-fisiologi dan tindak balas anatomi padi terhadap pengelogan air dan tanah tepu air dalam keadaan tanah berasid dengan kandungan Fe yang tinggi. Morfo-fisiologi dan ciri anatomi dinilai. Keputusan kajian menunjukkan bahawa pengelogan air berasid dan kandungan Fe yang tinggi di dalam tanah mengganggu pertumbuhan padi seperti yang ditunjukkan daripada perubahan morfo-fisiologi dan ciri anotomi. Tanah tepu air menunjukkan keadaan yang lebih baik untuk penuaian padi berbanding kawasan pengelogan air. Biojisim tumbuhan, anatomi akar, tahap pemperoksidaan lipid, penyerapan Fe dan parameter pertukaran gas daun boleh menjadi bukti untuk mengkaji perubahan padi di bawah keadaan yang ditetapkan. Berdasarkan pekali toleransi pengelogan air (WTC), kami mencadangkan berat kering pucuk dan akar, ketebalan korteks serta kandungan Fe pada pucuk sebagai alat saringan untuk toleransi pengelogan air padi di kawasan berasid dan kandungan Fe yang tinggi dalam tanah. Hasil kajian memberikan pandangan berkenaan keadaan pengelogan air berasid dan kandungan Fe yang tinggi dalam tanah dapat dipulihkan dalam penuaian tanaman.
Kata kunci: Air tepu; anatomi akar; pertukaran gas daun; takung air
RUJUKAN
Association of Analytical
Communities (AOAC). 2012. Official Methods of
Analysis of AOAC International. 19th Ed. Gaitherburg: AOAC International Suite 500.
Audebert, A. & Sahrawat, K.L. 2000. Mechanisms for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition 23(11-12): 1877-1885.
Bai, T.,
Li, C.,
Ma, F.,
Feng, F. & Shu, H. 2010.
Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant and Soil 327(1-2): 95-105.
Bjerre, G.K. & Schierup, H.H.
1985. Uptake of six heavy metals by oat as influenced by soil type and
additions of cadmium, lead, zinc and copper. Plant and Soil 88: 57-69.
Bojórquez-Quintal, E.,
Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. 2017. Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science 8: 1767.
Boonlertniruna, S., Meechouib, S. & Sarobol, E. 2010. Physiological and morphological responses of field corn seedlings to
chitosan under hypoxic conditions. Scienceasia 36(2): 89-93.
Bramley, H., Tyerman, S.D., Turner, D.W. & Turner, N.C. 2011. Root growth of lupins is more sensitive to
waterlogging than wheat. Functional Plant
Biology 38(11): 910-918.
Cardoso, J.A.,
Rincon, J.,
Jimenez, J.C., Noguera, D. & Rao, I.M. 2013. Morpho-anatomical adaptations to waterlogging by germplasm accessions in
a tropical forage grass. AoB PLANTS 5.
Drew, M.C., He, C.J. & Morgan, P.W. 2000. Programmed cell
death and aerenchyma formation in roots. Trends in Plant Science 5(3): 123-127.
Fu, X.Y.,
Peng, S.X.,
Yang, S.,
Chen, Y.H.,
Zhang, J.Y.,
Mo, W.P.,
Zhu, J.Y.,
Ye, Y.X. & Huang, X.M. 2012. Effects of flooding on grafted Annona plants of different scion/rootstock combinations. Agricultural Sciences 3(2): 249-256.
Garthwaite, A.J.,
Von Bothmer, R. & Colmer, T.D. 2003. Diversity in root aeration traits associated with waterlogging tolerance
in the genus Hordeum. Functional Plant Biology 30(8):
875-889.
Ghulamahdi, M.,
Welly, H.D. & Sagala, D. 2018. Nutrient uptake, growth and productivity of soybean cultivars at two
water depths under saturated soil culture in tidal swamps. Pakistan Journal of Nutrition 17(3):
124-130.
Ghulamahdi, M., Chaerunisa, S.R., Lubis, I. & Taylor, P. 2016. Response of five soybean varieties under saturated soil culture and
temporary flooding on tidal swamp. Procedia
Environmental Science 33: 87-93.
Ghulamahdi, M.,
Aziz, S.A. & Makarim, A.K. 2012. Application of saturated soil culture technology to rice and soybean to
increase the planting index in tidal land. In Supporting
Food Sovereignty and Sustainable Energy, edited by Melati, M., Aziz, S.A., Efendi, D., Armini, N.M., Sudarsono, Ekana’ul, N. & Al Tapsi, S. Symposium and
Seminar with Peragi-Perhorti-Peripi-Higi, Bogor, Indonesia
1-2 May.
Ghulamahdi, M., Aziz, S.A., Melati, M., Dewi, N. & Rais, S.A. 2006. Nitrogenase
activity, nutrient uptake, and growth of two soybean varieties under saturated
and dry soil conditions. Indonesian Journal
of Agronomy 34(1): 32-38.
Grzesiak, S., Hura, T., Grzesiak, M.T. & Pieńkowski, S. 1999. The
impact of limited soil moisture and waterlogging stress conditions on
morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiologiae Plantarum 21(3): 305-315.
Hairmansis, A., Kustianto, B. & Pane, H. 2012. Development of the new
submergence tolerant rice varieties Inpara 4 and Inpara 5 for flash flood prone areas. Jurnal Penelitian dan Pengembangan Pertanian 31(1):
1-7.
Harahap, S.M. 2014. Adaptation mechanism and accumulation of Fe and Al suppression to
increase rice productivity on tidal land. IPB University, Ph.D. Thesis (Unpublished).
Hidayati, N. & Anas,
I. 2016. Photosynthesis and transpiration
rates of rice cultivated under the system of rice
intensification and the effects on growth and yield. HAYATI Journal of Bioscience 23(2):
67-72.
Horchani, F. & Aschi-Smiti, S. 2010. Prolonged root hypoxia effects on enzymes
involved in nitrogen assimilation pathway in tomato plants. Plant Signaling & Behavior 5(12): 1583-1589.
Iu, K.L.,
Pulford, L.D. & Duncan, H.J. 1982. Influence of soil waterlogging on subsequent plant growth and trace metal
content. Plant and Soil 66(3):
423-427.
Jiménez, J.C.,
Cardoso, J.A., Arango-Londoño, D.,
Fischer, G. & Rao, I. 2015. Influence of soil fertility on waterlogging tolerance of two Brachiaria grasses. Agronomía Colombiana 33(1):
20-28.
Khabaz-Saberi, H. & Rengel, Z. 2010.
Aluminum, manganese, and iron tolerance improves performance of wheat genotypes
in waterlogged acidic soils. Journal of
Plant Nutrition and Soil Science 173(3): 461-468.
Khabaz-Saberi, H.,
Setter, T.L. & Waters, I. 2006. Waterlogging induces high to toxic concentrations of iron, aluminum, and
manganese in wheat varieties on acidic soil. Journal of Plant Nutrition 29(5): 899-911.
Lichtenthaler, H.K. 1987. Chlorophylls and carotenoid: Pigments of photosynthetic biomembranes. Methods
in Enzymology 148: 350-382.
Liu, Y.Z.,
Tang, B.,
Zheng, Y.L.,
Ma, K.J.,
Xu, S.Z. & Qiu, F.Z. 2010. Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agricultural Science in China 9(3):
362-369.
Malik, A.I., Colmer, T.D.,
Lambers, H. & Schortemeyer, M. 2001. Changes in physiological and morphological traits of roots and shoots of
wheat in response to different depths of waterlogging. Australian Journal of Plant Physiology 28(11): 1121-1131.
Matin, N.H.
& Jalali, M. 2017. The effect of waterlogging on electrochemical properties and soluble
nutrients in paddy soils. Paddy and Water
Environment 15(2): 443-455.
Matsuura, A.,
An, P.,
Murata, K. & Inanaga, S. 2016. Effect of pre- and post-heading waterlogging on growth and grain yield
of four millets. Plant Production Science 19(3):
348-359.
Nguyen, H.T.,
Fischer, K.S.
& Fukai, S. 2009.
Physiological responses to various water saving systems in rice. Field Crops
Research 112(2-3): 189-198.
Nishiuchi, S.,
Yamauchi, T.,
Takahashi, H., Kotula, L. & Nakazono, M. 2012.
Mechanisms for coping with submergence and waterlogging in rice. Rice 5(1): 2.
Noya, A.I. 2014.
Soybean adaptation on acid sulphate soil with saturated soil culture
technology. IPB University, Ph.D. Thesis (Unpublished).
Nugraha, Y. & Rumanti, I.A. 2017. Breeding
for rice variety tolerant to iron toxicity. Iptek Tanaman Pangan 12(1): 9-24.
Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., Lutts, S.
& Lefèvre, I.
2012. Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant, Cell
& Environment 35(10):
1837-1859.
Rachmawati, D., Maryani, M.M., Kusumadewi, S. & Rahayu, F. 2019. Survival and root structure changes of
rice seedlings in different cultivars under submergence condition. Biodiversitas 20(10):
3011-3017.
Sagala, D., Ghulamahdi, G., Trikoesoemaningtyas, Lubis, I., Shiraiwa, T. & Homma, K. 2019. Growth and yield
of six soybean genotypes on short-term flooding condition in the type-B overflow tidal swamps. Indonesian Journal
of Agronomy 47(1): 25-31.
Schneider, C.A., Rasband, W.S.
& Eliceiri, K.W. 2012. NIH image to ImageJ: 25 years of
image analysis. Nature Methods 9(7):
671-675.
Singh, S.P.
& Setter, T.L. 2015. Effect of waterlogging on element concentrations, growth and yield of
wheat varieties under farmer’s sodic field conditions. Proceedings of the National Academy of Sciences, India Section B:
Biological Sciences 87(2): 513-520.
Singh, S., Mackill, D.J. & Ismail, A.M. 2014. Physiological basis of tolerance to complete submergence in rice involves
genetic factors in addition to the SUB1 gene. AoB PLANTS 6.
Sitaresmi, T., Suwarno, W.D., Rumanti, I.A.,
Ardie, S.W.
& Aswidinnoor, H. 2019. Parameters and secondary characters for selection of tolerance rice
varieties under stagnant flooding condition. AGRIVITA Journal of Agricultural Science 41(2):
372-384.
Statistics
Indonesia. 2019a. Purbolinggo Subdistrict in
Figures 2019. Purbolinggo: BPS-Statistics of
Lampung Timur Regency.
Statistics
Indonesia. 2019b. Lampung Timur Regency
in Figures 2019. Purbolinggo: BPS-Statistics of
Lampung Timur Regency.
Steffens, D., Hütsch, B.W., Eschholz, T., Lošák, T. & Schubert, S. 2005. Water logging
may inhibit plant growth primarily by nutrient deficiency rather than nutrient
toxicity. Plant, Soil and Environment 51(12): 545-552.
Sundgren, T.K., Uhlena, A.K., Lillemoa, M., Brieseb, C. & Wojciechowski, T. 2018. Rapid seedling establishment and a narrow root stele promotes
waterlogging tolerance in spring wheat. Journal
of Plant Physiology 227: 45-55.
Suralta, R.R. &
Yamauchi, A. 2008. Root growth, aerenchyma development, and oxygen transport in
rice genotypes subjected to drought and waterlogging. Environmental and Experimental Botany 64(1): 75-82.
Turhadi, T., Hamim, H., Ghulamahdi, M. & Miftahudin, M. 2018. Morpho-physiological
responses of rice genotypes and its clustering under hydroponic iron toxicity
conditions. Asian Journal of Agriculture and
Biology 6(4): 495-505.
Wang, Y.S., Ding, M.D., Gu, X.G., Wang, J.L., Yunli, P., Gao, L.P. &
Xia, T. 2013. Analysis
of interfering substances in the measurement of malondialdehid content in
plant leaves. American Journal of
Biochemistry and Biotechnology 9(3): 235-242.
White, J.W. & Molano, C.H. 1994. Production of common bean under saturated soil culture. Field Crops Research 36(1): 56-58.
Yamauchi, T.,
Abe, F., Tsutsumi, N. & Nakazono, M. 2019. Root
cortex provides a venue for gas-space formation and is essential for plant
adaptation to waterlogging. Frontiers in
Plant Science 10: 259.
Yamauchi, T., Tanaka, A., Mori, H., Takamure, I., Kato, K. & Nakazono, M.
2016. Ethylene-dependent aerenchyma formation in adventitious roots is regulated
differently in rice and maize. Plant, Cell &
Environment 39(10): 2145-2157.
Yavas, I., Unay, A. & Aydin, M. 2012. The waterlogging tolerance of wheat varieties in western of Turkey. The Scientific World Journal 2012: 529128.
Zhou, J.,
Wan, S.W.,
Li, G. & Qin, P. 2011. Ultrastructure changes of seedlings of Kosteletzkya virginica under waterlogging conditions. Biologia Plantarum 55:
493-498.
Zhu, J., Liang, J., Xu, Z., Fan, X., Zhou, Q., Shen, Q. & Xu, G. 2015. Root aeration improves growth and nitrogen accumulation in rice seedlings
under low nitrogen. AoB PLANTS 7.
*Pengarang untuk surat-menyurat; email: miftahudin@apps.ipb.ac.id
|