Sains Malaysiana 49(10)(2020): 2477-2486
http://dx.doi.org/10.17576/jsm-2020-4910-13
Evaluation
and Optimization of a New Approach on Phenol Extraction from Real Water
(Penilaian dan Pengoptimuman Pendekatan yang Baharu untuk Memisahkan Fenol daripada Air Semula Jadi)
NIK NUR ATIQAH NIK WEE1, NUR
IRSALINA MOHD JUBER1, MOHD NOR FAIZ NORRRAHIM2 &
NOORASHIKIN MD. SALEH1*
1Department of Chemical and
Process Engineering, CESPRO, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 16 Januari 2020/Diterima: 29 April
2020
Abstract
Phenolic compounds are hazardous industrial
wastes that can contaminate real water resources. Therefore, the removal of
these compounds in order to reach acceptable levels before discharging becomes
challenging. In this study, a combination method between dispersive
liquid-liquid microextraction (DLLME) with
high-performance liquid chromatography-UV detection at 280 nm with the
isocratic condition was introduced as a new approach for separating phenol
content in water samples. The optimized parameters that affect the extraction
efficiency, such as type of solvents, the volume of extraction and dispersive,
stirring speed of centrifuge and salt concentration were evaluated using
response surface methodology (RSM). A central composite design (CCD) was used
to investigate the effect of four independent variables parameters, as
mentioned. The recovery value on the DLLME method for the water sample is in
the range of 92.31 - 114.29%. Based on the recovery obtained, the DLMME-HPLC-UV
is a promising method for phenol extraction because it is simple, effective and
produce a high percentage of the recovery.
Keywords: Dispersive liquid-liquid microextraction; high-performance liquid-chromatography-UV;
phenol; response surface methodology; water sample
Abstrak
Sebatian fenol adalah sisa industri berbahaya yang boleh mencemari sumber air semula jadi. Oleh itu, penyingkiran sebatian ini daripada air untuk mencapai tahap yang selamat sebelum dilepaskan menjadi suatu perkara yang mencabar. Dalam kajian ini, gabungan kaedah mikroektraksi cecair-cecair serak (DLLME) dengan kromatografi cecair prestasi tinggi-pengesanan UV pada 280 nm dalam keadaan isokumen diperkenalkan sebagai pendekatan yang baru untuk memisahkan fenol yang terdapat di dalam sampel air. Untuk mengoptimunkan parameter
yang mempengaruhi kadar kecekapan pengekstrakan, seperti jenis pelarut, jumlah pengekstrakan dan serakan, kelajuan pengadukan emparan dan juga kepekatan garam dinilai menggunakan kaedah permukaan tindak balas (RSM). Reka bentuk komposit pusat (CCD) digunakan untuk mengkaji kesan empat parameter pemboleh ubah bebas seperti yang dinyatakan. Nilai pemulihan kaedah DLLME untuk sampel air adalah dalam lingkungan 92.31% -
114.29%. Berdasarkan nilai pemulihan yang diperoleh,
DLLME-HPLC-UV adalah kaedah yang menjanjikan untuk pengestrakan fenol kerana ia adalah mudah, berkesan dan dapat menghasilkan peratusan pemulihan yang tinggi.
Kata kunci: Fenol; kaedah permukaan tindak balas; kromatografi cecair prestasi tinggi-pengesanan UV;mikroektraksi cecair-cecair serakan; sampel air
RUJUKAN
Abdelkreem, M. 2013. Adsorption
of phenol from industrial wastewater using olive mill waste. APCBEE Procedia 5(1): 349-357.
Alhaji, M.H., Abdullahi,
M.S., Oparah, E.N., Bitrus,
H. & Rigit, A.R.H. 2020. Productiton of annins from Acacia nilotica pods for the leather manufacturing industry-extractions, characterization, and
optimization using design of experiment. Bioresources 15(2): 2212-2226.
Azahar, N.F., Abd Gani, S.S. & Mokhtar, N.F.M. 2017. Optimization
of phenolics and flavonoids extraction conditions of Curcuma zedoaria leaves using response surface
methodology. Chemistry Central Journal 11(1): 1-10.
Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad, A.B., Takriff,
M.S. & Sopian, K. 2012. Synthesis and catalytic
activity of TiO2 nanoparticles for photochemical oxidation of
concentrated chlorophenols under direct solar
radiation. International Journal of Electrochemical Science 7(6):
4871-4888.
Bezerra, M.A., Santelli, R.E.,
Oliveira, E.P., Villar, L.S. & Escaleira, L.A. 2008. Response surface methodology (RSM) as
a tool for optimization in analytical chemistry. Talanta 76(5): 965-977.
Cabrera, K., Lubda, D., Eggenweiler, H.M., Minakuchi, H.
& Nakanishi, K. 2000. A new monolithic‐type HPLC column for fast separations. Journal of High Resolution Chromatography 23(1): 93-99.
Cai, Y., Cai,
Y.E., Shi, Y., Liu, J., Mou, S. & Lu, Y. 2007. A
liquid-liquid extraction technique for phthalate esters with water-soluble
organic solvents by adding inorganic salts. Microchimica Acta 157(1-2): 73-79.
Gupta, V.K., Ali, I., Saleh, T.A., Nayak,
A. & Agarwal, S. 2012. Chemical treatment technologies for waste-water
recycling - An overview. RSC Advances 2(16): 6380-6388.
Jain, R., Mudiam, M.K.R.,
Chauhan, A., Ch, R., Murthy, R.C. & Khan, H.A.
2013. Simultaneous derivatisation and preconcentration of parabens in food and other matrices by
isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis. Food
Chemistry 141(1): 436-443.
Jiang, H., Fang, Y., Fu, Y. & Guo,
Q.X. 2003. Studies on the extraction of phenol in wastewater. Journal of
Hazardous Materials 101(2): 179-190.
Khalid, M., Joly, G., Renaud, A. & Magnoux,
P. 2004. Removal of phenol from water by adsorption using zeolites. Industrial
& Engineering Chemistry Research 43(17): 5275-5280.
Liu, S., Xie, Q., Chen, J., Sun,
J., He, H. & Zhang, X. 2013. Development and comparison of two dispersive
liquid-liquid microextraction techniques coupled to
high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils. Journal of Chromatography A 1295:
16-23.
Liyana-Pathirana, C. & Shahidi, F. 2005. Optimization of extraction of phenolic
compounds from wheat using response surface methodology. Food Chemistry 93(1): 47-56.
Lua, A.C. 2019. A detailed study
of pyrolysis conditions on the production of steam-activated carbon derived
from oil-palm shell and its application in phenol adsorption. Biomass
Conversion and Biorefinery 10: 523-533.
Maham, M., Kiarostami,
V., Waqif-Husain, S. & Sharifabadi, M.K. 2014.
Analysis of chlorpheniramine in human urine samples
using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. Brazilian Journal of
Pharmaceutical Sciences 50(3): 551-557.
Mahdavi, S., Molodi,
P. & Zarabi, M. 2018. Functionalized MgO, CeO2 and ZnO nanoparticles with humic acid for the study of
nitrate adsorption efficiency from water. Research on Chemical Intermediates 44(9): 5043-5062.
Masqué, N., Marcé,
R.M. & Borrull, F. 1998. New polymeric and other
types of sorbents for solid-phase extraction of polar organic micropollutants from environmental water. Trac Trends in Analytical Chemistry 17(6):
384-394.
Mittal, A., Kaur, D., Malviya,
A., Mittal, J. & Gupta, V.K. 2009. Adsorption studies on the removal of
coloring agent phenol red from wastewater using waste materials as adsorbents. Journal
of Colloid and Interface Science 337(2): 345-354.
Pawliszyn, J. 2003. Sample
preparation: quo vadis? Analytical Chemistry 75(11): 2543-2558.
Pourbasheer, E., Qasemi, F., Rouhi, M., Azari, Z.
& Ganjali, M.R. 2017. Preconcentration and determination of 2‐mercaptobenzimidazole by dispersive liquid-liquid microextraction and experimental design. Journal of
Separation Science 40(11): 2467-2473.
Rezaee, M., Yamini,
Y., Shariati, S., Esrafili,
A. & Shamsipur, M. 2009. Dispersive liquid-liquid microextraction combined with high-performance liquid
chromatography-UV detection as a very simple, rapid and sensitive method for
the determination of bisphenol A in water samples. Journal
of Chromatography A 1216(9): 1511-1514.
Rezaee, M., Assadi,
Y., Hosseini, M.R.M., Aghaee, E., Ahmadi, F. & Berijani, S. 2006. Determination of organic compounds in
water using dispersive liquid-liquid microextraction. Journal of Chromatography A 1116(1-2): 1-9.
Rykowska, I., Ziemblińska,
J. & Nowak, I. 2018. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. Journal
of Molecular Liquids 259: 319-339.
Said, M., Ahmad, A. & Mohammad, A.W. 2013. Removal of
phenol during ultrafiltration of Palm oil mill effluent (POME): Effect of pH,
ionic strength, pressure and temperature. Der Pharma Chemica 5(3): 190-196.
Silva, E.M., Rogez, H. & Larondelle, Y. 2007. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation
and Purification Technology 55(3): 381-387.
Singh, K.P., Malik, A., Sinha, S. & Ojha,
P. 2008. Liquid-phase adsorption of phenols using activated carbons derived
from agricultural waste material. Journal of Hazardous Materials 150(3):
626-641.
Sohaimi, N.M., Saleh, N.M., Ariffin, M.M., Beh, S.Y. &
Ahmad, R. 2018. An environmentally friendly method for extraction of parabens
in various samples using low viscosity and low cloud point temperature
surfactant. Malaysian Journal of Analytical Sciences 22(3): 365-374.
Wu, Q., Li, Y., Wang, C., Liu, Z., Zang,
X., Zhou, X. & Wang, Z. 2009. Dispersive liquid-liquid microextraction combined with high performance liquid chromatography-fluorescence detection for
the determination of carbendazim and thiabendazole in environmental samples. Analytica Chimica Acta 638(2):
139-145.
Yang, C., Qian, Y., Zhang, L. & Feng, J. 2006. Solvent
extraction process development and on-site trial-plant for phenol removal from
industrial coal-gasification wastewater. Chemical Engineering Journal 117(2): 179-185.
Yousefzadeh, S., Matin, A.R., Ahmadi, E., Sabeti,
Z., Alimohammadi, M., Aslani,
H. & Nabizadeh, R. 2018. Response surface methodology
as a tool for modeling and optimization of Bacillus
subtilis spores inactivation by UV/nano-Fe0 process for safe water production. Food and Chemical Toxicology 114:
334-345.
Zhang, P.P., Shi, Z.G., Yu, Q.W. & Feng, Y.Q. 2011. A
new device for magnetic stirring-assisted dispersive liquid-liquid microextraction of UV filters in environmental water
samples. Talanta 83(5): 1711-1715.
*Pengarang untuk surat-menyurat; email: noorashikin@ukm.edu.my
|