Sains Malaysiana 49(10)(2020): 2539-2545
http://dx.doi.org/10.17576/jsm-2020-4910-19
Temperature Performance of a Portable
Solar Greenhouse Dryer with Various Collector Design
(Prestasi Suhu Pengering Rumah Hijau Suria Mudah Alih dengan Pelbagai Reka Bentuk Pengumpulan)
NURUL
AIMAN MHD SAFRI1, ZALITA ZAINUDDIN1*, MOHD SYAHRIMAN MOHD
AZMI2, AHMAD FUDHOLI3, IDRIS ZULKIFLE1 &
MOHD HAFIDZ RUSLAN3
1Department of
Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department of
Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak Darul Ridzuan, Malaysia
3Solar Energy
Research Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 21 Februari 2020/Diterima: 24 April
2020
ABSTRACT
The two main components of a
solar greenhouse drying system are the solar collector and drying chamber. Solar
greenhouse utilized thermal energy to increase the temperature in the drying
chamber at an optimum rate for drying purposes with the use of solar
collectors. In this study the performance of a self-built portable solar
greenhouse dryer using different types of solar collectors were evaluated,
which are flat plate with insulator, V-groove with insulator, flat plate and
V-groove with insulator and flat plate and V-groove without insulator. The experiment was conducted indoor, in the solar
simulator laboratory using halogen lamps. Two parameters were varied, which are the mass
flow rates at 0.011, 0.021, 0.030, and 0.041 kg/s, and the light intensities at 625, 708, 860, and 988 W/m2. The
results showed that for all types of collector, the combination of the maximum
solar radiation intensity of 988 W/m2 and the lowest mass flow rate
of 0.011 kg/s produced the highest average maximum collector outlet
temperature. Whereas, the highest efficiency is at the highest mass flow rate
of 0.041 kg/s and the minimum solar radiation intensity of 625 W/m2.
In this study it was found that the solar collector that has the best
performance of heat transfer is the combination of flat-plate and V-groove
collector with an insulator under the V-groove while the best collector design
for drying purpose is the combination of flat-plate and V-groove collector
without insulator.
Keywords: Efficiency; performance; solar
greenhouse dryer; V-groove collector
ABSTRAK
Dua komponen utama bagi sistem pengering rumah hijau suria adalah pengumpul suria dan kebuk pengeringan. Rumah hijau suria menggunakan tenaga terma untuk meningkatkan suhu di dalam kebuk pengeringan pada kadar yang optimum untuk tujuan pengeringan dengan penggunaan pengumpul suria. Dalam kajian ini, prestasi pengering rumah hijau suria mudah alih swabina menggunakan pengumpul suria berbeza jenis telah dinilai iaitu, plat-datar dengan penebat, lekuk-V dengan penebat, gabungan plat-datar dan lekuk-V dengan penebat dan gabungan plat-datar dan lekuk-V tanpa penebat. Uji kaji telah dijalankan di dalam makmal simulator suria yang menggunakan lampu halogen. Dua parameter telah diubah iaitu, kadar aliran jisim pada 0.011,
0.021, 0.030 dan 0.041 kg/s dan keamatan cahaya pada 625, 708,
860 dan 988 W/m2. Keputusan kajian menunjukkan bahawa gabungan keamatan sinar suria maksimum bagi 988 W/m2 dan kadar aliran jisim paling rendah bagi 0.011
kg/s telah mencapai suhu keluar pengumpul dengan purata maksimum yang paling tinggi untuk semua jenis pengumpul. Manakala kecekapan tertinggi adalah pada kadar aliran jisim tertinggi iaitu pada 0.041 kg/s dan keamatan sinar suria minimum pada 625 W/m2. Kajian ini juga mendapati bahawa pengumpul suria dengan prestasi pemindahan haba terbaik adalah gabungan plat-datar dan lekuk-V dengan penebat di bawah lekuk-V manakala reka bentuk pengumpul suria terbaik bagi tujuan pengeringan adalah gabungan plat-datar dan lekuk-V tanpa penebat.
Kata kunci: Kecekapan; pengering rumah hijau suria; pengumpul berlekuk-V; prestasi
RUJUKAN
Chauhan, P.S. & Kumar, A. 2016. Performance analysis of
greenhouse dryer by using insulated north-wall under natural convection mode. Energy
Reports 2: 107-116.
El-sebaii, A.A. & Shalaby, S.M. 2012. Solar drying
of agricultural products: A review. Renewable and Sustainable Energy Reviews 16(1): 37-43.
Essalhi, H., Tadili, R. & Bargach, M.N. 2017. Conception
of a solar air collector for an indirect solar dryer. Pear drying test. Energy
Procedia 141: 29-33.
Evangelisti, L., Vollaro, R.D.L. & Asdrubali, F. 2019.
Latest advances on solar thermal collectors: A comprehensive review. Renewable
and Sustainable Energy Reviews 114: 109318.
Fudholi, A. & Sopian, K. 2019. A review of solar air flat
plate collector for drying application. Renewable and Sustainable Energy
Reviews 102: 333-345.
Fudholi, A., Othman, M.Y., Ruslan, M.H. & Sopian, K.
2013. Drying of Malaysian Capsicum annuum L. (red chili) dried by open and solar drying. International Journal of
Photoenergy 2013: Article ID. 167895.
Hassanien, R.H.E., Li, M. & Lin, W.D. 2016. Advanced
applications of solar energy in agricultural greenhouses. Renewable and
Sustainable Energy Reviews 54: 989-1001.
Othman, M.Y.H., Fudholi, A., Sopian, K., Ruslan, M.H. &
Yahya, M. 2012. Analisis kinetik pengeringan rumpai laut Gracilaria changii menggunakan sistem pengering suria. Sains
Malaysiana 41(2): 245-252.
Prakash, O. & Kumar, A. 2014. Solar greenhouse drying: A
review. Renewable and Sustainable Energy Reviews 29: 905-910.
Prakash, O., Kumar, A. & Laguri, V. 2016. Performance of
modified greenhouse dryer with thermal energy storage. Energy Reports 2:
155-162.
Shamekhi-Amiri, S., Gorji, T.B., Gorji-Bandpy, M. &
Jahanshahi, M. 2018. Drying behaviour of lemon balm leaves in an indirect
double-pass packed bed forced convection solar dryer system. Case Studies in
Thermal Engineering 12: 677-686.
Sopian, K. & Othman, M.Y.H. 1992. Estimates of monthly
average daily global solar radiation in Malaysia. Renewable Energy 2(3):
319-325.
Zulkifle, I., Alwaeli, A.H., Ruslan, M.H., Ibarahim, Z.,
Othman, M.Y.H. & Sopian, K. 2018. Numerical investigation of V-groove
air-collector performance with changing cover in Bangi, Malaysia. Case
Studies in Thermal Engineering 12: 587-599.
*Pengarang untuk surat-menyurat; email: zazai@ukm.edu.my
|