Sains Malaysiana 49(11)(2020): 2679-2687
http://dx.doi.org/10.17576/jsm-2020-4911-07
Thermal
Behavior of Cocrystal: A Case Study of Ketoprofen-Malonic Acid and Ketoprofen-Nicotinamide Cocrystals
(Kelakuan Termal Kokristal: Kajian Kes Kokristal Ketoprofen-Asid Malonik dan Ketoprofen-Nikotinamida)
YUDI
WICAKSONO1,5*, DWI SETYAWAN2, ARI SATIA NUGRAHA3,5 & SISWANDONO4
1Department
of Pharmaceutics, Faculty of Pharmacy, University of Jember,
68121 Jember, Indonesia
2Department
of Pharmaceutics, Faculty of Pharmacy, Airlangga University, 60286 Surabaya, Indonesia
3Drug Utilisation and Discovery Research Group, Faculty of
Pharmacy, University of Jember
68121 Jember, Indonesia
4Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, 60286 Surabaya, Indonesia
5Center
for Development of Advanced Science and Technology, University of Jember, 68121 Jember, Indonesia
Diserahkan: 30 November 2019/Diterima: 25
Mei 2020
ABSTRACT
Thermal
properties are essential parameters in transformations of solid state. It is
useful for estimating physical-chemical interactions that occur specifically in
a multicomponent system as cocrystal. However, there
is still minimum information about determining the thermal properties of cocrystal in literature. In this study, the investigation
of thermal behavior of cocrystal was determined in
non-isothermal conditions based on the Kissinger method. The ketoprofen-malonic acid (KMA) and ketoprofen-nicotinamide
(KN) cocrystal used as model were prepared using
solvent evaporation method, while the characterization was performed by powder
x-ray diffraction (PXRD), differential scanning calorimetry (DSC), and
Fourier-transform infrared (FTIR). From the experimental results, the
activation energy (Ea) of pure ketoprofen, KMA cocrystal, and KN cocrystal are 264.38, 384.77, and 116.64 kJ mol-1,
while the enthalpy of activation (ΔH*) are 261.31, 381.78, and 113.76 kJ mol-1, respectively. The
calculated values of entropy of activation (ΔS*) for pure ketoprofen, KMA cocrystal, and KN cocrystal are
465.22, 809.77, and 84.34 J K-1 mol-1 and the free energy
of activation (ΔG*) of pure ketoprofen, KMA cocrystal, and KN cocrystal obtained by general thermodynamic equation
are 89.53, 90.87, and 84.62 kJ mol-1, respectively. Experimental
results of the thermodynamic parameters showed cocrystals to have a positive value of ΔS*,
indicating the formation of cocrystals was a
non-spontaneous process. Also, the KMA cocrystal had
greater free energy of activation (ΔG*) than the KN cocrystal which indicated the
formation of the crystal lattice involving greater binding energy than KN cocrystal.
Keywords: Cocrystal; ketoprofen;
Kissinger method; thermal properties
ABSTRAK
Sifat terma adalah parameter penting dalam transformasi keadaan pepejal. Ia berguna untuk menganggar interaksi fizikal-kimia yang berlaku secara khusus dalam sistem multikomponen sebagai kokristal. Walau bagaimanapun, maklumat berkenaan penentuan sifat terma kokristal dalam kajian kepustakaan masih kurang. Dalam penyelidikan ini, kajian terhadap sifat terma kokristal ditentukan dalam keadaan bukan isotermal berdasarkan kaedah Kissinger. Ketoprofen-asid malonik (KMA) dan ketoprofen-nikotinamida (KN) yang digunakan sebagai model disediakan menggunakan kaedah penyejatan pelarut, sementara pencirian dilakukan dengan pembelauan sinar-x serbuk (PXRD), kalorimetri pengimbasan pembezaan (DSC) dan transformasi Fourier inframerah (FTIR). Daripada keputusan kajian, tenaga pengaktifan (Ea) ketoprofen tulen, kokristal KMA, dan kokristal KN adalah 264.38, 384.77 dan 116.64
kJ mol-1, sementara entalpi pengaktifan (ΔH*) masing-masing adalah 261.31, 381.78 dan 113.76
kJ mol-1. Nilai pengiraan entropi pengaktifan (ΔS*) untuk ketoprofen tulen, kokristal KMA dan kokristal KN adalah 465.22,
809.77 dan 84.34 J K-1 mol-1 dan tenaga pengaktifan bebas (ΔG *) ketoprofen tulen, kokristal KMA dan kokristal KN yang diperoleh oleh persamaan termodinamik am masing-masing adalah 89.53, 90.87 dan 84.62 kJ
mol-1. Hasil uji kaji parameter termodinamik menunjukkan kokristal yang terbentuk mempunyai nilaiΔS * yang positif, menunjukkan pembentukan kokristal tersebut adalah melalui proses yang tidak spontan. Selain itu, kokristal KMA juga mempunyai tenaga pengaktifan bebas (ΔG*)
yang lebih besar daripada kokristal KN yang menunjukkan pembentukan kisi kristal kokristal KMA menggunakan tenaga pengikatan yang lebih besar daripada kokristal KN.
Kata kunci: Kaedah Kissinger; ketoprofen; kokristal; sifat terma
REFERENCES
Boonchom, B. & Danvirutai, C. 2009. Kinetics and thermodynamics of thermal
decomposition of synthetic AlPO4.2H2O. Journal of Thermal Analysis and Calorimetry 98(3): 771-777.
Chadha,
R., Bhandari, S., Haneef, J., Khullar,
S. & Mandal, S. 2014. Cocrystals of telmisartan: Characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm 16:
8375-8389.
Chow,
S.F., Chen, M., Shi, L., Chow, A.H.L. & Sun, C.C. 2012. Simultaneously
improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharmaceutical Research 29(7):
1854-1865.
Diniz, L.F., Souza, M.S., Carvalho, Jr. P.S., da Silva C.C.P., D'Vries,
R.F. & Ellena, J. 2018. Novel isoniazid cocrystals with aromatic carboxylic acids: Crystal
engineering, spectroscopy and thermochemical investigations. Journal of Molecular Structure 1153:
58-68.
Evora, A.O.L., Castro, R.A.E., Maria,
T.M.R., Silva, M.R., Ter Horst, J.H., Canotilho, J. & Eusebio,
M.E.S. 2014. A thermodynamic based approach on the investigation of a diflunisal pharmaceutical co-crystal with improved
intrinsic dissolution rate. International
Journal of Pharmaceutics 466(1-2): 68-75.
Goud, N.R., Gangavaram,
S., Suresh, K., Pal, S., Manjunatha,
S.G., Nambiar, S. & Nangia,
A. 2012. Novel furosemide cocrystals and selection of
high solubility drug forms. Journal
of Pharmaceutical Sciences 101(2): 664-680.
Kuleshova, L.N., Hofmann,
D.W.M. & Boese, R. 2013. Lattice energy
calculation - a quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids. Chemical Physics Letters 564: 26-32.
Liu,
X., Lu, M., Guo, Z., Huang, L., Feng, X. & Wu, C.
2012. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharmaceutical Research 29(3): 806-817.
Liu,
W., Dang, L. & Wei, H. 2013. Thermal, phase transition, and thermal
kinetics studies of carbamazepine. Journal
of Thermal Analysis and Calorimetry 111(3): 1999-2004.
Ma,
P., Zhang, L., Zhu, S.G. & Chen, H.H. 2012. Synthesis, structural
investigation, thermal decomposition, and properties of a cocrystal energetic perchlorate amine salt. Combustion,
Explosion, and Shock Waves 48(4): 483-487.
Masuda,
T., Yoshihashi, Y., Yonemochi,
E., Fujii, K., Uekusa, H.
& Terada, K. 2012. Cocrystallization and amorphization induced by drug-excipient interaction
improves the physical properties of acyclovir. International Journal of Pharmaceutics 422(1-2): 160-169.
McClements, D.J. 2012.
Crystals and crystallization in oil-in-water emulsions: Implications for
emulsion-based delivery systems. Advances
in Colloid and Interface Science 174: 1-30.
Perpetuo, G.L., Chierice, G.O., Ferreira, L.T., Fraga-Silva,
T.F.C., Venturini, J., Arruda,
M.S.P., Bannach, G. & Castro, R.A.E. 2017. A
combined approach using differential scanning calorimetry with polarized light thermomicroscopy in the investigation of ketoprofen and nicotinamide cocrystal. Thermochimica Acta 651:
1-10.
Pindelska, E., Sokal, A. & Kolodziejski, W.
2017. Pharmaceutical cocrystals, salts and
polymorphs: Advanced characterization techniques. Advanced Drug Delivery Reviews 117: 111-146.
Qi,
Z., Zhang, D., Chen, F., Miao, J. & Ren, B. 2014. Thermal decomposition and
non- isothermal decomposition kinetics of carbamazepine. Russian Journal of Physical Chemistry A 88(13): 2308-2313.
Shohin, I.E., Kulinich,
J.I., Ramenskaya, G.V., Abrahamsson,
B., Kopp, S., Langguth, P., Polli,
J.E., Shah, V.P., Groot, D.W., Barends, D.M. & Dressman, J.B. 2012. Biowaiver monographs for immediate-release solid oral dosage forms: Ketoprofen. Journal of Pharmaceutical Sciences 101(10): 3593-3603.
Sowa,
M., Slepokura, K. & Matczak-Jon,
E. 2014. Solid-state characterization and solubility of a genistein-caffeine cocrystal. Journal
of Molecular Structure 1076: 80-88.
Srivastava,
A., Chandel, N. & Mehta, N. 2017. Calorimetric
studies of crystallization for multi-component glasses of Se–Te–Sn–Ag (STSA) system using model-free and modelfitting non-isothermal methods. Journal of Thermal Analysis and Calorimetry 128(2): 907-914.
Teoh,
X.Y., Mahyuddin, F.N., Ahmad, W. & Chan, S.Y.
2020. Formulation strategy of nitrofurantoin: Co-crystal or solid dispersion? Pharmaceutical Development and Technology 25(2): 245-251.
Tita, D., Fulias,
A. & Tita, B. 2011. Thermal stability of ketoprofen - active substance and tablets. Journal of Thermal Analysis and Calorimetry 105(2): 501-508.
Tita, B., Fulia,
A., Bandur, G., Rusu, G.
& Tita, D. 2010. Thermal stability of ibuprofen.
Kinetic study under non-isothermal conditions. Revue Roumaine Chimie 55(9): 553-558.
Vaghela, R., Kulkarni,
P.K., Hani, U., Varma, V.N.S.K. & Abhay, R. 2014.
Enhancing aqueous solubility of ketoprofen by fusion
technique using suitable co-formers. Current Drug Therapy 9(3): 199-207.
Wang,
J.R., Yu, X., Zhou, C., Lin, Y., Chen, C., Pan, G. & Mei, X. 2015.
Improving the dissolution and bioavailability of 6-mercaptopurine via
co-crystallization with isonicotinamide. Bioorganic & Medicinal Chemistry
Letters 25(5): 1036-1039.
Wicaksono, Y., Setyawan, D. & Siswandono, S.
2018. Multicomponent crystallization of ketoprofen-nicotinamide
for improving the solubility and dissolution rate. Chemistry Journal
of Moldova 13(2): 74-81.
Wicaksono, Y., Setyawan, D. & Siswandono, S.
2017. Formation of ketoprofen-malonic acid cocrystal by solvent evaporation method. Indonesian Journal of Chemistry 17(2):
161-166.
Yan,
Q.L., Zeman, S., Elbeih,
A., Song, Z.W. & Malek, J. 2013.
The effect of crystal structure on the thermal
reactivity of CL-20 and its C4 bonded explosives (I):
Thermodynamic properties and decomposition kinetics. Journal of Thermal Analysis and Calorimetry 112(2): 823-836.
Yang,
X., Wang, J., Song, H. & Zou, W. 2016. Thermal properties and solubility of
methyl α -D-glucopyranoside in methanol at different temperatures. Fluid Phase Equilibria 409: 417-424.
Yuliandra, Y., Zaini, E., Syofyan, S., Pratiwi, W., Putri, L.N., Pratiwi, Y.S. & Arifin, H.
2018. Cocrystal of ibuprofen-nicotinamide: Solid-state
characterization and in vivo analgesic activity evaluation. Scientia Pharmaceutica 86(2): 23-33.
Zhang,
Y., Yan, C.M., Chen, C., Zhao, X.Q., Li, T. & Sun, B.W. 2019. Three new cocrystals derived from liquid pyrazine spices: x‑ray
structures and Hirshfeld surface analyses. Research on Chemical Intermediates 45(11): 5745-5760.
*Pengarang untuk surat-menyurat; email: yudi.farmasi@unej.ac.id
|