Sains Malaysiana 49(11)(2020): 2847-2857
http://dx.doi.org/10.17576/jsm-2020-4911-23
Novel
Random k Satisfiability for k ≤ 2 in Hopfield
Neural Network
(Novel
Rawak k Kepuasan untuk k ≤ 2 dalam Rangkaian Neural Hopfield)
SARATHA
SATHASIVAM1, MOHD. ASYRAF MANSOR2*, AHMAD IZANI MD ISMAIL1,
SITI ZULAIKHA MOHD JAMALUDIN1, MOHD SHAREDUWAN MOHD KASIHMUDDIN1 & MUSTAFA MAMAT3
1School of Mathematical Sciences, Universiti Sains
Malaysia, 11800 USM, Pulau Pinang, Malaysia
2School of Distance Education, Universiti Sains
Malaysia, 11800 USM, Pulau Pinang, Malaysia
3Faculty of Informatics and Computing, Universiti
Sultan Zainal Abidin, 21300 UniSZA Kuala Terengganu, Terengganu Darul Iman, Malaysia
Diserahkan:
23 Mac 2020/Diterima: 18 Mei 2020
ABSTRACT
The k Satisfiability logic representation (kSAT) contains valuable information
that can be represented in terms of variables. This paper investigates the use
of a particular non-systematic logical rule namely Random k Satisfiability (RANkSAT). RANkSAT contains a series of
satisfiable clauses but the structure of the formula is determined randomly by
the user. In the present study, RANkSAT representation is successfully
implemented in Hopfield Neural Network (HNN) by obtaining the optimal synaptic
weights. We focus on the different regimes for k ≤ 2 by taking advantage of the non-redundant
logical structure, thus obtaining the final neuron state that minimizes the
cost function. We also simulate the performances of RANkSAT logical rule
using several performance metrics. The simulated results suggest that the RANkSAT
representation can be embedded optimally in HNN and that the proposed method
can retrieve the optimal final state.
Keywords: Artificial neural network; Hopfield
neural network; logic programming; random satisfiability
ABSTRAK
Perwakilan
logik k Kepuasan mengandungi maklumat berguna yang diwakilkan dalam
sebutan pemboleh ubah. Kajian ini mengkaji penggunaan suatu peraturan logik
yang tidak sistematik iaitu logik k Kepuasan Rawak (RANkSAT). RANkSAT mengandungi siri klausa penuh tetapi struktur
rumusnya ditentukan secara rawak oleh pengguna. Dalam kajian ini, perwakilan
RANkSAT berjaya dilaksanakan untuk Rangkaian Neural Hopfield (HNN)
dengan memperoleh pemberat sinapsis yang optimum. Fokus diberikan kepada rejim
berbeza bagi k ≤ 2 dengan menggunakan struktur
logik yang tidak berulang dan justeru memperoleh secara optimal keadaan neuron
akhir yang meminimumkan fungsi kos. Prestasi logik k Kepuasan Rawak disimulasi dengan menggunakan beberapa indikator
prestasi tertentu. Keputusan simulasi menunjukkan perwakilan RANkSAT boleh dimasukkan secara optimum dalam HNN dan
teknik yang telah dicadangkan berupaya memperoleh semula perwakilan neuron
akhir yang optimum.
Kata
kunci: Kepuasan rawak; rangkaian neural buatan; rangkaian neural Hopfield; pengaturcaraan logik
RUJUKAN
Abdullah,
W.A.T.W. 1996. Logic programming in neural networks. International Journal
of Computer Science 9(1): 1-5.
Abdullah,
W.A.T.W. 1992. Logic programming on a neural network. International Journal
of Intelligent Systems 7(6): 513-519.
Amendola,
G., Ricca, F. & Truszczynski, M. 2020. New models for generating hard
random boolean formulas and disjunctive logic programs. Artificial
Intelligence 279: 103185.
Barra,
A., Beccaria, M. & Fachechi, A. 2018. A new mechanical approach to handle
generalized Hopfield neural networks. Neural Networks 106: 205-222.
Fan,
Y. & Shen, J. 2011. On the phase transitions of random k-constraint
satisfaction problems. Artificial Intelligence 175(3-4): 914-927.
Fitzsimmons,
M. & Kunze, H. 2019. Combining Hopfield neural networks, with applications
to grid-based mathematics puzzles. Neural Networks 118: 81-89.
Gao,
Y. 2009. Data reductions, fixed parameter tractability, and random weighted d-CNF
satisfiability. Artificial Intelligence 173(14): 1343-1366.
Hamadneh,
N., Sathasivam, S. & Choon, O.H. 2012. Higher order logic programming in
radial basis function neural network. Applied Mathematical Sciences 6(3): 115-127.
Hopfield,
J.J. & Tank, D.W. 1985. “Neural” computation of decisions in optimization
problems. Biological Cybernetics 52(3): 141-152.
Jia,
D., Duan, X. & Khan, M.K. 2014. Binary artificial bee colony optimization
using bitwise operation. Computers &
Industrial Engineering 76: 360-365.
Kasihmuddin,
M.S.M., Mansor, M.A. & Sathasivam, S. 2019a. Students’ performance via
satisfiability reverse analysis method with Hopfield Neural Network. Proceedings
of the International Conference on Mathematical Sciences and Technology 2018
(MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for
Technological Innovation. p. 060035.
Kasihmuddin,
M.S.M., Mansor, M.A., Basir, M., Faisal, M. & Sathasivam, S., 2019b.
Discrete mutation Hopfield neural network in propositional satisfiability. Mathematics 7(11): 1133.
Kasihmuddin,
M.S.M., Mansor, M.A. & Sathasivam, S. 2018a. Satisfiability based reverse
analysis method in diabetes detection. In Proceedings of the 25th National
Symposium on Mathematical Sciences (SKSM25): Mathematical Sciences as the Core
of Intellectual Excellence. p. 020020.
Kasihmuddin,
M.S.M., Mansor, M.A. & Sathasivam, S. 2018b. Discrete Hopfield Neural
Network in restricted maximum k-satisfiability logic programming. Sains
Malaysiana 47(6): 1327-1335.
Kasihmuddin,
M.S.M., Mansor, M.A. & Sathasivam, S. 2017. Hybrid genetic algorithm in the
hopfield network for logic satisfiability problem. Pertanika Journal of
Science & Technology 25(1): 139-152.
Kasihmuddin,
M.S.M., Mansor, M.A. & Sathasivam, S. 2016. Bezier Curves Satisfiability
Model in Enhanced Hopfield Network. International Journal of Intelligent
Systems and Applications 8(12): 9-17.
Kho,
L.C., Kasihmuddin, M.S.M., Mansor, M. & Sathasivam, S. 2020. Logic mining
in league of legends. Pertanika Journal of Science & Technology 28(1): 211-225.
Kobayashi,
M. 2019. Storage capacity of hyperbolic Hopfield neural networks. Neurocomputing 369: 185-190.
Liu,
D., Wu, Y.L., Li, X. & Qi, L. 2020. Medi-Care AI: Predicting medications
from billing codes via robust recurrent neural networks. Neural Networks 124: 109-116.
Maneva,
E. & Alistair, S. 2008. On the satisfiability threshold and clustering of
solutions of random 3-SAT formulas. Theoretical Computer Science 407(1-3): 359-369.
Mansor,
M.A. & Sathasivam, S. 2016. Accelerating activation function for
3-satisfiability logic programming. International Journal of Intelligent
Systems and Applications 8(10): 44-50.
Mansor,
M.A., Jamaludin, S.Z.M., Kasihmuddin, M.S.M., Alzaeemi, S.A., Basir, M.F.M.
& Sathasivam, S. 2020. Systematic Boolean satisfiability programming in
radial basis function neural network. Processes 8(2): 214.
Mansor,
M.A., Sathasivam, S. & Kasihmuddin, M.S.M. 2018. Artificial immune system
algorithm with neural network approach for social media performance metrics. In Proceedings of the 25th National Symposium on Mathematical Sciences
(SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. p.
020072.
Mansor,
M.A., Kasihmuddin, M.S.M. & Sathasivam, S. 2017a. Artificial immune system
paradigm in the Hopfield network for 3-satisfiability problem. Pertanika
Journal of Science & Technology 25(4): 1173-1188.
Mansor,
M.A., Kasihmuddin, M.S.M. & Sathasivam, S. 2017b. Robust artificial immune
system in the Hopfield network for maximum k-satisfiability. International
Journal of Intelligent Systems and Applications 4(4): 63-71.
Mansor,
M.A., Kasihmuddin, M.S.M. & Sathasivam, S. 2016a. VLSI circuit
configuration using satisfiability logic in Hopfield network. International
Journal of Intelligent Systems and Applications 8(9): 22-29.
Mansor,
M.A., Kasihmuddin, M.S.M. & Sathasivam, S. 2016b. Enhanced Hopfield Network
for pattern satisfiability optimization. International Journal of
Intelligent Systems and Applications 8(11): 27-33.
Pinkas,
G. 1991. Symmetric neural networks and propositional logic satisfiability. Neural
Computation 3(2): 282-291.
Reddy,
K.S., Panwar, L., Panigrahi, B.K. & Kumar, R. 2019. Binary whale
optimization algorithm: A new metaheuristic approach for profit-based unit commitment
problems in competitive electricity markets. Engineering Optimization 51(3): 369-389.
Sathasivam,
S. 2010. Upgrading logic programming in Hopfield network. Sains Malaysiana 39(1): 115-118.
Schawe,
H., Bleim, R. & Hartmann, A.K. 2019. Phase transitions of the typical
algorithmic complexity of the random satisfiability problem studied with linear
programming. PLoS ONE 14(4): e0215309.
Sharma,
M. & Garg, R. 2020. An artificial neural network based approach for energy
efficient task scheduling in cloud data centers. Sustainable Computing:
Informatics and Systems 26: 100373.
Wang,
X.Y. & Li, Z.M. 2019. A color image encryption algorithm based on Hopfield
chaotic neural network. Optics and Lasers in Engineering 115: 107-118.
*Pengarang untuk surat-menyurat; email:
asyrafman@usm.my
|