Sains Malaysiana
49(1)(2020): 161-168
http://dx.doi.org/10.17576/jsm-2020-4901-20
DNA
Methylation of Human Choline Kinase Alpha Gene
(Metilasi DNA Gen Alfa Kolina Kinase Manusia)
SITI
AISYAH FATEN MOHAMED SA'DOM, NUR
FARAH HANI AZEMI, MOHAMMAD SHAHRIZAL MOHAMMAD
UMAR, YOKE HIANG YEE, WEI CUN SEE TOO & LING LING FEW*
School
of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia
Diserahkan: 12 Ogos 2018/Diterima: 17 Oktober 2019
Abstract
Increased level of choline kinase (CK) is
a common feature in cancers and inhibition of this enzyme has been applied as
anticancer strategy. DNA methylation of gene promoter especially at CpG island is associated with suppression of gene
expression. Despite the importance of CK especially the alpha isoform in cancer
pathogenesis, epigenetic regulation of cka expression has not been investigated.
Hence, this study aimed to determine the effect of DNA methylation on cka promoter activity and gene expression by
using hypomethylating (5-aza) and methylating (budesonide) agents. The level of DNA methylation in the second CpG island of cka promoter was determined by PCR-based
method. 5-aza and budesonide increased the methylation of the selected CpG island compared to untreated control. Treatment with
the drugs produced opposite effect, with 5-aza induced cka promoter activity and gene expression while budesonide suppressed the promoter
activity and mRNA level of this gene. Deletion of a region containing the second CpG island on cka promoter resulted in significantly lower
promoter activity. In conclusion, this study showed that DNA methylation could
be one of the mechanisms that regulate the expression of cka gene.
Keywords: Choline kinase; DNA methylation;
epigenetics; gene expression
Abstrak
Peningkatan tahap kolina kinase
(CK) adalah ciri umum kanser dan perencatan enzim ini telah diguna sebagai
strategi antikanser. Metilasi DNA promoter gen terutamanya pada pulau CpG telah
dikaitkan dengan perencatan pengekspresan gen. Walaupun CK, terutamanya
isoforma alfa, penting dalam patogenesis kanser, pengawalaturan epigenetik
pengekspresan cka masih belum pernah dikaji. Maka, kajian ini bertujuan menentukan kesan
metilasi DNA terhadap aktiviti promoter dan pengekspresan gen cka dengan menggunakan agen
hipometilasi (5-aza) dan metilasi (budesonida). Tahap metilasi DNA pada pulau
CpG kedua pada promoter cka telah ditentukan dengan kaedah berdasarkan PCR. 5-aza
dan budesonida meningkatkan tahap metilasi pulau CpG yang dikaji berbanding
kawalan tanpa rawatan. Rawatan dengan agen ini menghasilkan kesan berlawanan
dengan 5-aza merangsang aktiviti promoter dan pengekspresan gen cka manakala budesonida merencat
aktiviti promoter dan tahap mRNA gen ini. Pemadaman salah satu kawasan yang
mengandungi pulau CpG kedua pada promoter cka menyebabkan penurunan secara
signifikan aktiviti promoter. Kesimpulannya, kajian ini menunjukkan metilasi
DNA mungkin merupakan salah satu mekanisme yang mengawalatur pengekspresan gen cka.
Kata kunci: Epigenetik; kolina kinase; metilasi DNA; pengekspresan gen
RUJUKAN
Alyaqoub, F.S., Tao, L., Kramer, P.M., Steele, V.E., Lubet,
R.A., Gunning, W.T. & Pereira, M.A. 2007. Prevention of mouse lung tumors and modulation of DNA methylation by combined
treatment with budesonide and R115777 (ZarnestraMT). Carcinogenesis 28(1): 124-129.
Bird, A.P. 1986. CpG-rich
islands and the function of DNA methylation. Nature 321(6067): 209-213.
Bird, A. 2007. Perceptions of
epigenetics. Nature 447(7143):
396-398.
Christman, J.K. 2002. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of
DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 21(35):
5483-5495.
Ciechomska, M., Roszkowski, L. & Maslinski,
W. 2019. DNA methylation as a future therapeutic and diagnostic target in
rheumatoid arthritis. Cells8(9):
E953.
Comb, M. & Goodman, K.M. 1990. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factors AP-2. Nucleic Acids Research 18(13):
3975-3982.
Das, P.M. & Singal,
R. 2004. DNA methylation and cancer. Journal Clinical Oncology 22(22): 4632-4642.
Deaton, A.M. & Bird, A. 2011. CpG islands and regulation of transcription. Genes & Development 25(10):
1010-1022.
Du, X., Han, L., Guo,
A.Y. & Zhao, Z. 2012. Features of methylation and gene expression in the
promoter-associated CpG islands using human methylome data. Comparative
and Functional Genomics 2(6): 775-780.
Gailhouse, L., Liew,
L.C., Hatada, I., Nakagama,
H. & Ochiya, T. 2018. Epigenetic reprogramming
using 5-azacytidine promotes an anti-cancer response in pancreatic
adenocarcinoma cells. Cell Death and
Disease 9: 468. doi: 10.1038/s41419-018-0487-z.
Gallego-Ortega, D., Gómez del Pulgar, T., Valdés-Mora, F., Cebrián,
A. & Lacal, J.C. 2011. Involvement of human
choline kinase alpha and beta in carcinogenesis: A different role in lipid
metabolism and biological functions. Advances in Enzyme Regulation 51(1): 183-194.
Gómez-Perez, V., McSorley, T., See Too, W.C.,
Konrad, M. & Campos, J.M. 2012. Novel 4-amino bis-pyridinium and bis-quinolinium derivatives as choline kinase
inhibitors with antiproliferative activity against
the human breast cancer SKBR-3 cell line. ChemMedChem 7(4): 663-669.
Gruber, J., See Too, W.C., Wong, M.T., Lavie,
A., McSorley, T. & Konrad, M. 2012. Balance of
human choline kinase isoforms is critical for cell cycle regulation: Implications
for the development of choline kinase-targeted cancer therapy. FEBS Journal 279(11): 1915-1928.
Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. 1989.
Site-directed mutagenesis by overlap extension using the polymerase chain
reaction. Gene 77(1): 51-59.
Hon, G.C., Hawkins, R.D., Caballero, O.L.,
Lo, C., Lister, R., Pelizzola, M., Valsesia, A., Ye, Z., Kuan, S., Edsall, L.E., Camargo, A.A., Stevenson, B.J., Ecker, J.R., Bafna, V., Strausberg, R.L.,
Simpson, A.J. & Ren, B. 2012. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast
cancer. Genome Research 22(2):
246-258.
Kholod, N., Boniver, J. & Delvenne, P. 2007. A new dimethyl sulfoxide-based method
for gene promoter methylation detection. The
Journal of Molecular Diagnostics 9(5): 574-581.
Kurdyukov, S. & Bullock, M. 2016. DNA methylation analysis: Choosing the
right method. Biology 9: 3. doi: 10.3390/biology5010003.
Lacal, J.C. 2015. Choline kinase as a precision medicine target for therapy
in cancer, autoimmune diseases and malaria. Precision Medicine 2: e980. doi: 10.14800/pm.980.
Liang, H., Kowalczyk,
P., Junco, J.J., Santiago, K.D., Heather, L., Malik, G., Sung-Jen, W. & Slaga, T.J. 2014. Differential effects on lung cancer cell
proliferation by agonists of glucocorticoid and PPARα receptors. Molecular
Carcinogenesis 53(9):
753-763.
Lykidis, A., Wang, J., Karim, M.A.
& Jackowski, S. 2001. Overexpression of a
mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine
pathway. Journal of Biological Chemistry 276(3): 2174-2179.
Malito, E., Sekulic,
N., See Too, W.C., Konrad, M. & Arnon,
L. 2006. Elucidation of human choline kinase crystal structures in
complex with the products ADP or phosphocholine. Journal of Molecular Biology 364(2):
136-151.
Nan, X., Ng, H.H., Johnson, C.A., Laherty,
C.D., Turner, B.M., Eisenmen, R.N. & Bird, A.
1998. Transcriptional repression by methyl-CpG-binding
protein MeCP2 involves a histone deacetylase complex. Nature 393(6683): 386-389.
Pereira, M.A., Tao, L., Liu, Y., Li, L., Steele, V.E. & Lubet, R.A. 2006. Modulation by budesonide of DNA
methylation and mRNA expression in mouse lung tumors. International Journal of Cancer 120:
1150-1153.
Prokhortchouk, E. & Hendrich, B. 2002. Methyl-CpG binding proteins and cancer: Are MeCpGs more
important than MBDs? Oncogene 21(35):
5394-5399.
Ramirez de Molina, A., Gallego-Ortega,
D., Sarmentero-Estrada, J., Lagares, D., Gómez Del
Pulgar, T., Bandrés, E., García-Foncillas, J. & Lacal, J.C. 2008. Choline kinase as a link
connecting phospholipid metabolism and cell cycle regulation: Implications in
cancer therapy. The International Journal of Biochemistry & Cell Biology 40(9): 1753-1763.
Ramirez de Molina, A., Gutierrez, R., Ramos, M.A., Silva, J.M., Silva,
J., Bonilla, F., Sanchez, J.J. & Lacal, J.C. 2002. Increased
choline kinase activity in human breast carcinomas: Clinical evidence for a
potential novel antitumor strategy. Oncogene 21(27): 4317-4322.
Rodriguez-Gonzalez,
A., Ramirez de Molina, A., Fernandez, F. & Lacal,
J.C. 2004. Choline kinase inhibition induces the increase in ceramides
resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene 23(50): 8247-8259.
Sasai, N., Nakao, M. & Defossez,
P. 2010. Sequence-specific recognition of methylated DNA by human zinc-finger
proteins. Nucleic Acids Research 38(15): 5015-5022.
Shah, T., Wildes, F., Penet, M.F., Winnard Jr., P.T., Glunde, K., Artemov,
T., Ackerstaff, E., Gimi,
B., Kakkad, S., Raman, V. & Bhujwalla,
Z.M. 2010. Choline kinase overexpression increases invasiveness and drug
resistance of human breast cancer cells. NMR
in Biomedicine 23(6): 633-642.
Singal, R., Wang, S.Z., Sargent, T., Zhu, S.Z. & Ginder,
G.D. 2002. Methylation of promoter proximal-transcribed sequences of an
embryonic globin gene inhibits transcription in primary erythroid cells and
promotes formation of a cell type-specific methyl cytosine binding complex. Journal
of Biological Chemistry 277(3): 1897-1905.
Veronesi, G., Lazzeroni,
M., Szabo, E., Brown, P.H., DeCensi, A., Guerrieri-Gonzaga, A., Bellomi,
M., Radice, D., Grimaldi,
M.C., Spaggiari, L. & Bonanni,
B. 2015. Long-term effects
of inhaled budesonide on screening-detected lung nodules. Annals of Oncology 26(5):
1025-1030. doi: 10.1093/annonc/mdv064.
Watt, F. & Molloy, P.L. 1988. Cytosine methylation prevents binding
to DNA of a HeLa cell transcription factor required for optimal expression of
the adenovirus major late promoter. Genes
& Development 2(9):
1136-1143.
Wu, G. & Vance, D.E. 2010. Choline kinase and its function. Biochemistry and Cell Biology 88(4):
559-564.
*Pengarang untuk surat-menyurat; email: fewling@usm.my
|