Sains
Malaysiana 49(1)(2020): 201-209
http://dx.doi.org/10.17576/jsm-2020-4901-24
Air
Pollutant Index Calendar-Based Graphics for Visualizing Trends Profiling and
Analysis
(Indeks
Pencemaran Udara berdasarkan Kalendar Grafik untuk Pemprofilan Tren Visualisasi
dan Analisis)
NUR
HAIZUM ABD RAHMAN1* & MUHAMMAD HISYAM LEE2
1Department of Mathematics, Faculty of
Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
2Department of Mathematical Sciences,
Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor
Darul Takzim,Malaysia
Diserahkan: 3 Julai 2019/Diterima: 17 Oktober 2019
ABSTRACT
Detection of air quality abnormality is important as an early
warning system for air quality control and management. The information can
raise citizens’ awareness towards current air quality status. By using
time series plot, the data pattern can be identified but not able to exactly
determine the abnormality due to overcrowded plot. Therefore, visualization data
profiling was presented in this study by using seven years Malaysia daily air
pollutant index to improve the detection. Result shown, the developed approach
can simply identify the poor air quality across the month and year. Malaysia
air quality was good and consistent between November and May. However, upward
trend existed between June and October due to the forest fire happened in
Sumatra. This visualization approach improved air pollution detection profiling
and it is useful for related agencies to guide the control actions to be taken.
This approach can be applied to any countries and data set to give more
competent information.
Keywords: Air pollutant index; calendar;
data visualization; profiling
ABSTRAK
Pengesanan kelainan kualiti udara adalah
penting sebagai sistem amaran awal untuk kawalan dan pengurusan kualiti udara.
Maklumat ini dapat meningkatkan kesedaran masyarakat terhadap status kualiti
udara semasa. Dengan menggunakan plot siri masa, corak data dapat dikenal pasti
tetapi tidak dapat menentukan secara tepat kelainan akibat plot yang sesak.
Oleh itu, untuk meningkatkan pengesanan, pemprofilan data visualisasi telah
dibincangkan dalam kajian ini dengan menggunakan indeks pencemaran udara harian
di Malaysia selama tujuh tahun. Keputusan menunjukkan pendekatan yang digunakan
dapat mengenal pasti kualiti udara yang tidak baik sepanjang bulan dan tahun.
Kualiti udara di Malaysia adalah baik dan konsisten antara November dan Mei.
Bagaimanapun, aliran menaik wujud antara bulan Jun dan Oktober akibat kebakaran
hutan di Sumatra. Pendekatan profil visualisasi dapat mengesan pencemaran udara
dan berguna kepada agensi berkaitan untuk membimbing tindakan kawalan yang akan
diambil. Pendekatan ini boleh digunakan untuk mana-mana negara dan set data
untuk memberikan maklumat yang lebih cekap.
Kata kunci: Indeks pencemaran udara;
kalendar; pemprofilan; visualisasi data
RUJUKAN
Afroz, R., Hassan, M.N. & Ibrahim, N.A. 2003. Review of
air pollution and health impacts in Malaysia. Environmental Research
92(2): 71-77.
Ahmat, H., Yahaya, A.S. & Ramli, N.A. 2015. PM10 analysis for three industrialized areas using extreme value. Sains
Malaysiana 44(2): 175-186.
Dilla, W.N. & Raschke, R.L. 2015. Data visualization for
fraud detection: Practice implications and a call for future research. International
Journal of Accounting Information Systems 16: 1-22.
Gualtieri, G., Crisci, A., Tartaglia, M., Toscano, P.,
Vagnoli, C., Andreini, B.P. & Gioli, B. 2014. Analysis of 20-year air
quality trends and relationship with emission data: The case of Florence
(Italy). Urban Climate 10(P3):
530-549.
Hugine, A.L., Guerlain, S.A. & Turrentine, F.E. 2014.
Education: Visualizing surgical quality data with treemaps. Journal of
Surgical Research 191:
74-83.
Lanzafame, R., Scandura, P.F., Famoso, F., Monforte, P. &
Oliveri, C. 2014. Air quality data for Catania: Analysis and investigation case
study 2010-2011. Energy Procedia 45(2):
681-690.
Lee, S., Kim, E. & Monsen, K.A. 2015. Public health nurse
perceptions of Omaha System data visualization. International Journal of
Medical Informatics 84(10):
826-834.
Leh, O.L.H., Ahmad, S., Aiyub, K., Jani, Y.M. & Hwa, T.K.
2012. Urban air environmental health indicators for Kuala Lumpur city. Sains
Malaysiana 41(2): 179-191.
Moustris, K.P., Ziomas, I.C. & Paliatsos, A.G. 2010.
3-day-ahead forecasting of regional pollution index for the pollutants NO2,
CO, SO2, and O3 using artificial neural networks in
Athens, Greece. Water, Air, and Soil Pollution 209(1-4): 29-43.
Sansuddin, N., Ramli, N.A., Yahaya, A.S., Yusof, N.F.F.M.,
Ghazali, N.A. & Madhoun, W.A. 2011. Statistical analysis of PM10
concentrations at different locations in Malaysia. Environmental Monitoring
and Assessment 180(1-4):
573-588.
United States Environmental Protection Agency. 2014. Air
quality index: A guide to air quality and your health. In EPA.
https://doi.org/10.1023/A:1020370119096.
Wang, E., Cook, D. & Hyndman, R. 2018. Calendar-based
graphics for visualizing people’s daily schedules. Journal of Statistical
Software 10(2): 1-19. doi:10.18637/jss.v000.i00.
*Pengarang untuk surat-menyurat; email: nurhaizum_ar@upm.edu.my
|