Sains Malaysiana 49(1)(2020): 85-92

http://dx.doi.org/10.17576/jsm-2020-4901-10

 

Analysis of Free Oligosaccharides (fOS) from Wild-Type Saccharomyces cerevisiae (Baker's Yeast) using Two Different Extraction Methods

(Analisis Oligosakarida Bebas (fOS) daripada Saccharomyces cerevisiae (Yis Baker) Jenis Liar menggunakan Dua Kaedah Pengekstrakan Berbeza)

 

IQBAL JALALUDIN1, AMIRUL HUSNA SUDIN1, DHARSHINI ELANGOVAN1, HUSSEIN M. AL-BAJALAN1, NUR MAISARAH SARIZAN2, NOOR LIANA MAT YAJIT3, KAMALRUL AZLAN AZIZAN2, ABDUL MUNIR ABDUL MURAD3, FARAH DIBA ABU BAKAR3, DOMINIC S. ALONZI4 & MUKRAM MOHAMAD MACKEEN1,2*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institute of Systems Biology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan

Malaysia

 

3Department of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom

 

Diserahkan: 1 Oktober 2019/Diterima: 22 Oktober 2019

 

ABSTRACT

The glycomic profiles of free oligosaccharides (fOS) derived from misfolded N- and O-linked glycoproteins and lipid-linked oligosaccharides are important molecular signatures in various biological processes and serve as a readout of functional properties such as glycosidase inhibition. Several glycan extraction methods are available based on different sorbent chemistries that may influence the analytical profiles obtained. However, there is limited availability of studies comparing the effects of sorbent chemistries on glycan profiles.  Therefore, in our study, the fOS profiles from wild-type Saccharomyces cerevisiae (Baker's yeast) extracted using two common methods namely mixed-bed ion-exchange (MBIE) [AG50W-X12 (H+) and AG2-X8 (Cl-)] and reversed-phase (C18) sorbents were compared using total carbohydrate (phenol sulfuric acid) and total protein (bicinchoninic acid, BCA) assays, thin-layer chromatography (TLC) and high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) analyses. MBIE extraction contained higher oligosaccharide and protein (0.26 mg/mL and 1.8 mg/mL) content than C18 extraction (0.11 mg/mL and 0.2 mg/mL). TLC analysis (butanol: ethanol: water = 6:3:1 and 5:4:1) showed the presence of fOS in both the MBIE and C18 extracts based on the detection of orcinol active (UV-inactive) spots. Similar peaks were present in the HPLC-ELSD chromatograms for both extractions methods with MBIE showing higher abundance.  Glycan unit (GU) analysis of the dextran standard using HPLC-ELSD showed that the largest possible oligosaccharide structures detected were only di/trisaccharides. Based on all these results, MBIE extraction is a more suitable carbohydrate extraction technique compared to C18 extraction for subsequent profiling and functional studies of fOS.

 

Keywords: Free oligosaccharides (fOS); glycans; HPLC-ELSD; Saccharomyces cerevisiae; TLC

 

ABSTRAK

Profil glikomik oligosakarida bebas (fOS) yang diterbit daripada glikoprotein N- dan O- yang tersalah lipat serta oligosakarida terpaut-lipid (LLO) adalah penanda molekul penting dalam pelbagai proses biologi dan berfungsi sebagai bacaan terhadap sifat berfungsi seperti perencatan glikosidase. Beberapa kaedah pengekstrakan glikan boleh didapati berdasarkan pelbagai kimia bahan erap yang berbeza yang mungkin mempengaruhi profil analitik. Walau bagaimanapun, kajian terhadap perbandingan kesan kimia bahan erap terhadap profil glikan adalah terhad. Oleh itu, dalam kajian ini profil fOS daripada Saccharomyces cerevisiae (yis Baker) jenis liar diekstrak menggunakan dua kaedah yang digunakan secara meluas iaitu bahan erap dan pertukaran ion lapisan-campuran (MBIE) AG50W-X12 (H+) dan AG2-X8 (Cl-)] fasa berbalik (C18) dibandingkan dengan jumlah karbohidrat (asid fenol sulfurik) dan jumlah protein (asid bisikoninik, BCA), kromatografi lapisan nipis (TLC) dan kromatografi cecair berprestasi tinggi-penyejatan penyerakan cahaya (HPLC-ELSD). Pengekstrakan MBIE mengandungi kandungan oligosakarida dan protein yang lebih tinggi iaitu (0.26 mg/mL dan 1.8 mg/mL) berbanding dengan pengekstrakan C18 (0.11 mg/mL dan 0.2 mg/mL). Analisis TLC (butanol: etanol: air = 6: 3: 1 dan 5: 4: 1) menunjukkan kehadiran fOS dalam kedua-dua ekstrak MBIE dan C18 berdasarkan tompok aktif orsinol (tidak aktif-UV). Puncak yang sama hadir dalam kromatogram HPLC-ELSD untuk kedua-dua kaedah pengekstrakan dengan MBIE menunjukkan kelimpahan yang lebih tinggi. Analisis unit glikan (GU) terhadap data HPLC-ELSD piawai dekstran menunjukkan struktur oligosakarida yang paling besar dikesan hanya di/trisakarida. Berdasarkan keputusan yang diperoleh, pengekstrakan MBIE merupakan teknik pengekstrakan karbohidrat yang lebih sesuai berbanding dengan pengekstrakan C18 untuk kajian profil dan fungsi fOS.

 

Kata kunci: Glikan; HPLC-ELSD; Oligosakarida bebas (fOS); Saccharomyces cerevisiae; TLC

 

RUJUKAN

Alonzi, D.S., Su, Y.H. & Butters, T.D. 2011. Urinary glycan markers for disease. Biochemical Society Transactions 39: 393-398.

Alonzi, D.S., Neville, D.C.A., Lachmann, R.H., Dwek, R.A. & Butters, T.D. 2008. Glucosylated free oligosaccharides are biomarkers of endoplasmic-reticulum alpha-glucosidase inhibition. Biochemical Journal 409: 571-580.

Chantret, I., Frenoy, J.P. & Moore, S.E.H. 2003. Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: Roles for peptide: N-glycanase (Png1p) and vacuolar mannosidase (Ams1p). Biochemical Journal 373: 901-908.

Davids, M., Kane, M.S., Wolfe, L.A., Toro, C., Tifft, C.J., Adams, D., Li, X., Raihan, M.A., He, M., Gahl, W.A., Boerkoel, C.F. & Malicdan, M.C.V. 2019. Glycomics in rare diseases: From diagnosis tomechanism. Translational Research 206: 5-17.

Glawar, A.F.G., Best, D., Ayers, B.J., Miyauchi, S., Nakagawa, S., Aguilar-Moncayo, M., García Fernández, J.M., Ortiz Mellet, C., Crabtree, E.V., Butters, T.D., Wilson, F.X., Kato, A. & Fleet, G.W.J. 2012. Scalable syntheses of both enantiomers of DNJNAc and DGJNAc from glucuronolactone: The effect of N-alkylation on hexosaminidase inhibition. Chemistry European Journal 18: 9341-9359.

Harada, Y., Buser, R., Ngwa, E.M., Hirayama, H., Aebi, M. & Suzuki, T. 2013. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. Journal Biological Chemistry 288: 32673-32684.

Higgins, E. 2010. Carbohydrate analysis throughout the development of a protein therapeutic. Glycoconjugate Journal 21: 211-225.

Helenius, A. & Aebi, M. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry 73: 1019-1049.

Hirayama, H. 2018. Biology of free oligosaccharides: Function and metabolism of free N-glycans in eukaryote. Trends in Glycoscience and Glycotechnology 30: E161-E167.

Hirayama, H., Matsuda, T., Tsuchiya, Y., Oka, R., Seino, J., Huang, C., Nakajima, K., Noda, Y., Scichino, Y., Iwasaki, S. & Suzuki, T. 2019. Free glycans derived from O-mannosylated glycoproteins suggest the presence of an O-glycoprotein degradation pathway in yeast. Journal of Biological Chemistry 294(44): 15900-15911.

Hirayama, H., Seino, J., Kitajima, T., Jigami, Y. & Suzuki, T. 2010. Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiaeJournal of Biological Chemistry 285: 12390-12404.

Homan, K., Hanamatsu, H., Furukawa, J.I., Okada, K., Yokota, I., Onodera, T. & Iwasaki, N. 2019. Alteration of the total cellular glycome during late differentiation of chondrocytes. International Journal of Molecular Sciences 20: 1-16.

Huang, R., Cathey, S., Pollard, L. & Wood, T. 2018. UPLC-MS/MS analysis of urinary free oligosaccharides for lysosomal storage diseases: Diagnosis and potential treatment monitoring. Clinical Chemistry 64: 1772-1779.

Jalaludin, I., Sudin, A.H., Said, I.H., Azizan, K.A., Baharum, S.N., Murad, A.M.A., Bakar, F.D.B., Mahadi, N.M., Wormald, M.R., Alonzi, D.S. & Mackeen, M.M. 2017. Fluorescence and evaporative light scattering HPLC profiling of intracellular asparagine (N)-linked oligosaccharides from Saccharomyces cerevisiae using the Alg8 mutant. Malaysian Journal of Analytical Sciences 21: 1210-1218.

Karav, S., Casaburi, G., Arslan, A., Kaplan, M., Sucu, B. & Frese, S. 2019. N-glycans from human milk glycoproteins are selectively released by an infant gut symbiont in vivo. Journal of Functional Foods 61: 1-6.

Lin, C.H., Kuo, C.W., Jarvis, D.L. & Khoo, K.H. 2014. Facile removal of high mannose structures prior to extracting complex type N-glycans from de-N-glycosylated peptides retained by C18 solid phase to allow more efficient glycomic mapping. Proteomics 14: 87-92.

Liu, J., Jia, Y., Yang, Y., Chen, Q., Sun, L., Song, S., Huang, L. & Wang, Z. 2019. Mass spectrometry analysis of changes in human milk N/O-glycopatterns at different lactation stages. Journal of Agricultural and Food Chemistry 67: 10702-10712.

Mackeen, M.M., Almond, A., Deschamps, M., Cumpstey, I., Fairbanks, A.J., Tsang, C., Rudd, P.M., Butters, T.D., Dwek, R.A. & Wormald, M.R. 2009. The conformational properties of the Glc3Man unit suggest conformational biasing within the chaperone-assisted glycoprotein folding pathway. Journal of Molecular Biology 387: 335-347.

Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I. & Lee, Y.C. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry 339: 69-72.

Mellor, H., Neville, D.C.A., Harvey, D.J., Platt, F.M., Dwek, R.A. & Butter, T.D. 2004. Cellular effects of deoxynojirimycin analogues: Inhibition of N-linked oligosaccharide processing and generation of free glucosylated oligosaccharides. Biochemical Journal 381: 867-875.

Miller, J.L., Tyrrell, B.E. & Zitzmann, N. 2018. Mechanisms of antiviral activity of iminosugars against dengue virus. Advances in Experimental Medicine and Biology 1062: 277-301.

Neville, D.C.A., Coquard, V., Priestman, D.A., te Vruchte, D.J.M., Sillence, D.J., Dwek, R.A., Platt, F.M. & Butters, T.D. 2004. Analysis of fluorescently labelled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. Analytical Biochemistry 331: 275-282.

Nothaft, H., Liu, X., Li, J. & Szymanski, C.M. 2010. Campylobacter jejuni free oligosaccharides function and fate. Virulence 1: 546-550.

Rawlings, A.J., Lomas, H., Pilling, A.W., Lee, M.J.R., Alonzi, D.S., Rountree, J.S.S., Jenkinson, S.F., Fleet, G.W.J., Dwek, R.A., Jones, J.H. & Butters, T.D. 2009. Synthesis and biological characterisation of novel N-alkyl-deoxynojirimycin glucosidase inhibitors. ChemBioChem 10: 1101-1105.

Roth, J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K.G., Forum, V.L., Santimaria, R., Guhl, B. & Cho, J.W. 2010. Protein N-glycosylation, protein folding, and protein quality control. Molecules and Cells 30: 497-506.

Schoel, B., Welzel, M. & Kaufmann, S.H.E. 1995. Quantification of protein in dilute and complex samples: Modification of the bicinchoninic acid assay. Journal of Biochemical and Biophysical Methods 30: 199-206.

Shenkman, M., Ron, E., Yehuda, R., Benyair, R., Khalaila, I. & Lederkremer, G.Z. 2018.  Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Communications Biology 1: 1-11.

Verostek, M.F., Lubowski, C. & Trimble, R.B. 2000. Selective organic precipitation/extraction of released N-glycans following large-scale enzymatic deglycosylation of glycoproteins. Analytical Biochemistry 278: 111-122.

Zhang, Q., Li, H., Feng, X., Liu, B.F. & Liu, X. 2014. Purification of derivatised oligosaccharides by solid phase extraction for glycomic analysis. PLoS ONE 9: 1-10.

 

*Pengarang untuk surat menyurat; email: mukram.mackeen@ukm.edu.my

 

 

 

 

sebelumnya