Sains
Malaysiana 49(2)(2020): 389-397
http://dx.doi.org/10.17576/jsm-2020-4902-17
(Kesan Memperbaikkan Ekstrak
Etanol Rizom Etlingera calophrys (K.Schum.) pada Diet Teraruh Tinggi Lemak Ikan Belang Obes)
LOLY SUBHIATY IDRUS1, FAJAR FAKRI1,
RIKA HARTATI2, VIENNA SARASWATY3 & I KETUT ADNYANA1*
1Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institute
of Technology Bandung, Bandung, Indonesia
2Department of Pharmaceutical Biology, School of Pharmacy, Institute of
Technology Bandung, Bandung, Indonesia
3Research Unit for Clean Technology, Indonesian Institute of Sciences,
Bandung, Indonesia
Diserahkan: 19 Ogos 2019/Diterima: 30 Oktober
2019
Abstract
Obesity is a major
factor associated with inflammatory and various metabolic syndromes. Etlingera caloprhys, an Indonesia plant native from Southeast
Sulawesi, is traditionally used years as daily food ingredient by local
communities. The present paper presents an in vitro and in vivo study related to
the anti-obesity effects of Etlingera caloprhys ethanol extract (ECEE). An experiment was conducted to evaluate in
vitro pancreatic lipase enzyme (PLE)
inhibition and in vivo anti-obesity
activity in high fat diet (HFD) induced obese zebrafish fed with 10% w/w and
20% w/w ECEE-HFD were evaluated. To confirm anti-obesity activity, a set of
obesity and biochemistry parameters i.e. body weight, body mass index (BMI),
triglyceride and blood glucose levels, were monitored. Additionally, gene
expression levels related to obesity i.e. adiponectin and PPARγ in visceral
adipose tissue (VAT) were also evaluated. The results showed that ECEE
significantly (p <0.05) inhibited PLE activity with an inhibition
concentration (IC)50 of below 100 µg/mL. The HFD induced obese
zebrafish fed with 10% w/w and 20% w/w ECEE-HFD showed decreasing body weight
and BMI. The biochemistry parameters of the HFD-induced obese zebrafish fed
with 10% w/w ECEE-HFD obviously displayed optimum reduction of triglycerides
and blood glucose levels. More importantly, the gene expression confirmed that
ECEE suppressed adipogenesis in VAT. Hence, ECEE is suggested as a potent
alternative medicine for prevention of metabolic syndromes related to obesity.
Keywords: Anti-obesity; Etlingera calophrys; pancreatic lipase; zebrafish
Abstrak
Keobesan
adalah faktor utama yang dikaitkan dengan radang dan pelbagai sindrom
metabolisme. Etlingera
calophrys, tumbuhan asli
Indonesia dari Sulawesi Tenggara, secara tradisinya digunakan selama
bertahun-tahun sebagai bahan makanan harian oleh masyarakat tempatan. Kertas
ini membentangkan kajian secara in vitro dan in vivo yang berkaitan dengan kesan anti-keobesan daripada ekstrak etanol Etlingera calophrys (ECEE). Satu uji kaji telah dijalankan untuk
menilai perencatan enzim lipase pankreas (PLE) dan aktiviti anti-keobesan secara in vivo dalam diet teraruh lemak tinggi (HFD) daripada ikan zebra obes
yang diberi makan 10% w/w dan 20% w/w ECEE -HFD telah dinilai. Untuk
mengesahkan aktiviti anti-keobesan, satu set keobesan dan parameter biokimia
iaitu berat badan, indeks jisim badan (BMI), trigliserida dan paras glukosa
darah telah dipantau. Selain itu, tahap ekspresi gen yang berkaitan dengan
keobesan iaitu adiponektin dan PPARγ dalam tisu adipos visera (VAT) juga
dinilai. Hasil kajian menunjukkan bahawa ECEE dengan ketara (p < 0.05)
merencat aktiviti PLE dengan kepekatan perencatan (IC)50 di bawah
100 μg/mL. HFD teraruh ikan zebra obes diberi makan 10% w/w dan 20% w/w
ECEE-HFD menunjukkan penurunan berat badan dan BMI. Parameter biokimia daripada
HFD teraruh ikan zebra obes yang diberi makan 10% w/w ECEE-HFD jelas
menunjukkan pengurangan optimum trigliserida dan paras glukosa darah. Lebih
penting lagi, pengekspresan gen mengesahkan bahawa ECEE menghalang adipogenesis
dalam VAT. Oleh itu, ECEE dicadangkan sebagai ubat alternatif yang mujarab
untuk mencegah sindrom metabolik yang berkaitan dengan keobesan.
Kata kunci: Anti-keobesan; Etlingera calophrys; ikan zebra; lipase pancreas
RUJUKAN
Afshin, A., Forouzanfar,
M.H. & Reitsma, M.B. 2017. Health effects of overweight and obesity in 195
countries over 25 years. New England
Journal of Medicine 377(1): 13-27.
Balaji, M., Ganjayi,
M.S., Hanuma, G.E., Parim, B.N., Mopuri, R. & Dasari, S. 2016. A review on
possible therapeutic targets to contain obesity: The role of phytochemicals. Obesity Research & Clinical Practice 10(4): 363-380.
Balsan, G.A., Vieira,
J.L., Oliveira, A.M. & Portal, V.L. 2015. Relationship between adiponectin,
obesity and insulin resistance. Revista
da Associacao Medica Brasileira 61(1):
72-80.
Baqai, N. & Wilding,
J.P.H. 2015. Pathophysiology and aetiology of obesity. Medicine 43(2): 73-76.
Buchholz, T. & Melzig,
M.F. 2015. Polyphenolic compounds as pancreatic lipase inhibitors.
Planta Medica 81(10): 771-783.
Cabezas,
M.C., Klop, B. & Elte, J.W.F. 2013. Dyslipidemia in obesity:
Mechanisms and potential targets. Nutrients 5(4): 1218-1240.
Caesar,
L.K. & Cech, N.B. 2019. Synergy and antagonism in natural product extracts: When 1+1 does not equal
2. Natural Product Reports 36:
869-888.
Choi, B.K., Park, S.B.,
Lee, D.R., Lee, H.J., Jin, Y.Y., Yang, S.H. & Suh, J.W. 2016. Green coffee
bean extract improves obesity by decreasing body fat in high-fat diet-induced
obese mice. Asian Pacific Journal of
Tropical Medicine 9(7): 635-643.
Czech, M.P. 2017.
Insulin action and resistance in obese and type 2 diabetes. Nature Medicine 23(7): 804-814.
Den Broeder, M.J.,
Kopylova, V.A., Kamminga, L.M. & Legler, J. 2015. Zebrafish as a model to
study the role of peroxisome proliferating-activated receptors in adipogenesis
and obesity. PPAR Research 358029: 1-11.
Grygiel-Gorniak, B.
2014. Peroxisome proliferator-activated receptors and their ligands:
Nutritional and clinical implications-A review. Nutrition Journal 13: 1-10.
Harper, C. &
Lawrence, Z. 2011. The Laboratory
Zebrafish. New York: Taylor and Francis Group.
Hossin, F.L.A. 2009.
Effect of pomegranate (Punica gratum)
peels and its extract on hypercholesterolemic rats. Pakistan Journal of Nutrition 8(8): 1251-1257.
Inoue, M., Ohtake, T.,
Motomura, W., Takahashi, N., Hosoki, Y., Miyoshi, S., Suzuki, Y., Saito, H.,
Kohgo, Y. & Okumura, T. 2005. Increased expression of PPAR-gamma in high
fat diet-induced liver steatosis in mice. Biochemical and Biophysical Research Communications 336(1): 215-222.
Kalueff, A.V., Stewart,
A.M. & Gerlai, R. 2014. Zebrafish as an emerging model for studying complex
brain disorders. Trends in
Pharmacological Sciences 35(2): 63-75.
Kersten, S. 2001.
Mechanism of nutritional and hormonal regulation of lipogenesis. EMBO Reports 2(4): 282-286.
Klein, S. & Romijn,
J.A. 2017. Williams
Textbook of Endocrinology. 13th edition. California: Elsevier.
Kumar, S. &
Alagawadi, K.R. 2013. Anti-obesity effects of galangin, a pancreatic lipase
inhibitor in cafeteria diet fed female rats. Pharmaceutical Biology 51(5): 607-613.
Landgraf, K., Schuster,
S., Meusel, A., Garten, A., Riemer, T., Schleinitz, D., Kies, W. & Korner,
A. 2017. Short-term overfeeding of
zebrafish with normal or high-fat diet as a model for the development of
metabolically healthy versus unhealthy obesity. BMC Physiology 17(4): 1-10.
Lei, F., Zhang, X.N.,
Wang, W., Xing, D.M., Xie, W.D., Su, H. & Du, L.J. 2007. Evidence of
anti-obesity effects of the pomegranate leaf extract in high-fat diet induced
obese mice. International Journal of
Obesity 31(6): 1023-1029.
Leibold, S. &
Hammerschmidt, M. 2015. Long-term hyperphagia and caloric restriction caused by
low- or high-density husbandry have differential effects on zebrafish
postembryonic development, somatic growth, fat accumulation and reproduction. PLoS ONE 10(3): e0120776.
Lin, R.J., Yen, C.M.,
Chou, T.H., Chiang, F.Y., Wang, G.H., Tseng, Y.P., Wang, L., Huang, T.W., Wang,
H.C., Chan, L.P., Ding, H.Y. & Liang, C.H. 2013. Antioxidant,
anti-adipocyte differentiation, antitumor activity, and anthelmintic activities
against Anisakis simplex and Hymenolepis nana of yakuchinone A from Alpinia oxyphylla. BMC Complementary Alternative Medicine 13: 237.
Meguro, S. &
Takahiro, H. 2018. Fish oil suppresses body fat accumulation in zebrafish. Zebrafish 15(1): 27-32
Moreira, D.L., Teixeira,
S.S., Monteiro, M.H.D., De-Oliveira, A.C.A.X. & Paumgartten, F.J.R. 2014.
Traditional use and safety of herbal medicines. The Brazilian Journal of Pharmacognosy 24(2): 248-257.
Nakayama, H., Shimada,
Y., Zang, L., Terasawa, M., Nishiura, K., Matsuda, K., Toombs, C., Langdon, C.
& Nishimura, N. 2018. Novel anti-obesity properties of Palmaria mollis in zebrafish and mouse models. Nutrients 10(10): 1-16.
Neia, V.B.M.J.C.,
Albuquerque, E.P.A., Figueiredo, I.L., Silva, T.C., Lewandowski, V., Almeida,
F.L.A., Ribeiro, R.P., Visentainer, J.E.L. & Visentainer, J.V. 2018. Effect
of peanut addition to the cafeteria diet on adiposity and inflammation in
zebrafish (Danio rerio). Food and Agricultural Immunology 29(1):
762-775.
Oka, T., Nishimura, Y.,
Zang, L., Hirano, M., Shimada, Y., Wang, Z., Umemoto, N., Kuronayagi, J.,
Nishimura, N. & Tanaka, T. 2010. Diet-induced obesity in zebrafish shares
common pathophysiological pathways with mammalian obesity. BMC Physiology 10(21): 1-13.
Park, K.S., Ciaraldi,
T.P., Abrams-Carter, L., Mudaliar, S., Nikoulina, S.E. & Henry, R.R. 1997.
PPAR-gamma gene expression is elevated in skeletal muscle of obese and type II
diabetic subjects. Diabetes 46(7):
1230-1234.
Pucci, A. & Finer,
N. 2015. New medications for treatment of obesity: Metabolic and cardiovascular
effects. Canadian Journal of Cardiology 31(2): 142-152.
Redinger, R.N. 2007. The
pathophysiology of obesity and its clinical manifestations. Gastroenterology & Hepatology 3(11):
856-863.
Ruslin & Sahidin, I.
2008. Identification and determination of traditional medicinal plants of
Southeast Sulawesi People at Arboretum Prof. Mahmud Hamundu Haluoleo University
(In Indonesian). Indonesian Journal of
Pharmacy 19(2): 101-107.
Sahidin, Wahyuni,
Muhammad Hajrul Malaka, Jabbar A., Imran. & Marianti A. Mangaau. 2018.
Evaluation of antiradical scavenger activity of extract and compounds from Etlingera calophrys stems. Asian
Journal Pharmaceutical Clinical Research 11(2): 238-241.
Schlegel, A. 2016.
Zebrafish models for dyslipidemia and atherosclerosis research. Frontiers in Endocrinology 7: 1-8.
Sikder, K., Shukla,
S.K., Patel, N., Singh, H. & Rafiq, K. 2018. High fat diet upregulates
fatty acid oxidation and ketogenesis via intervention of PPAR-γ. Cellular
Physiology and Biochemistry 48(3): 1317-1331.
Storlien, L.H., James,
D.E., Burleigh, K.M., Chisholm, D.J. & Kraegen, E.W. 1986. Fat feeding
causes widespread in vivo insulin
resistance, decreased energy expenditure, and obesity in rats. American
Journal of Physiology 251(5):
576-583.
Tian, C., Ye, X., Zhang,
R., Long, J., Ren, W., Ding, S., Liao, D., Jin, X., Wu, H., Xu,
S. & Ying, C. 2013. Green tea polyphenols reduced fat deposits
in high fat-fed rats via erk1/2-PPARc-adiponectin pathway. PLoS
ONE 8(1): e53796.
Vroegrijk, I.O., van Diepen,
J.A., van den Berg, S., Westbroek, I., Keizer, H., Gambelli, L., Hontecillas,
R., Bassaganya-Riera, J., Zondag, G.C., Romijn, J.A., Havekes, L.M. &
Voshol, P.J. 2011. Pomegranate seed oil, a rich source of punicic acid,
prevents diet-induced obesity and insulin resistance in mice. Food and Chemical Toxicology 49(6):
1426-1430.
World Health
Organization. 2014. Obesity and
Overweight. Fact sheet No. 311. Geneva, Switzerland.
Yang, M.H., Chin,
Y.W., Yoon, K.D. & Kim, J.W. 2014. Phenolic compounds with pancreatic
lipase inhibitory activity from Korean yam (Dioscorea
opposita). Journal of Enzyme
Inhibition Medicinal Chemistry 29(1): 1-6.
Yuniarto, A.,
Sukandar, E.Y., Fidrianny, I., Setiawan, F. & Adnyana, I.K. 2018.
Antiobesity, antidiabetic, and antioxidant activities of Senna (Senna
alexandrina Mill) and pomegranate (Punica gratum L.) leaves extracts
and its fractions. International Journal
of Pharmaceutical and Phytopharmacological Research 8(3): 18-24.
Zang, L., Maddison, L.A.
& Chen, W. 2018. Zebrafish as a model for obesity and diabetes. Frontiers in Cell and Developmental Biology 6: 1-13.
Zang, L., Shimada, Y.,
Kawajiri, J., Tanaka, T. & Nishimura, N. 2014. Effects of yuzu (Citrus junos Siebold ex Tanaka) peel on
the diet-induced obesity in a zebrafish model. Journal of Functional Foods 10: 499-510.
Zhou, J., Xu, Y.Q., Guo, S.Y. & Li, C.Q. 2015. Rapid analysis of hypolipidemic drugs in a
live zebrafish assay. Journal of Pharmacological and Toxicological Methods 72:
47-52.
*Pengarang untuk
surat-menyurat; email: ketut@fa.itb.ac.id
|