Sains Malaysiana
49(2)(2020): 439-445
http://dx.doi.org/10.17576/jsm-2020-4902-23
Identifying
Light Pollution Sources at Two Major Observatories in Malaysia
(Pengenalpastian
Sumber Pencemaran Cahaya di Balai Cerap Utama di Malaysia)
MOHAMMAD
R. TAHAR1,2, NAZHATULSHIMA AHMAD1 & NUR H. ISMAIL1
1Department
of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
2National
Space Agency, Pusat Angkasa Negara, 42700 Banting, Selangor Darul Ehsan, Malaysia
Diserahkan:
19 Ogos 2019/Diterima: 1 November 2019
ABSTRACT
A spectral observation and analysis were
conducted in order to identify the main contributor of sky brightness
at two of Malaysia's most active observatories. The light pollution
observations were carried out under moonless clear night sky with
a 90 mm refractor telescope and SBIG's Self Guiding Spectrograph.
We found that the main contributor to Balai Cerap Teluk Kemang (BCTK)
sky brightness is High Pressure Sodium (HPS) street lighting due to its number and density
used within 5 km radius of the observatory. HPS spectral lines dominate
the spectrum between 556 - 640 nm, agrees with the orange hue visible to the
naked eye. The intensity due to HPS lighting is so high that there was no trace
of the concerned white LED spotlight less than 1 km away. However,
some traces of elements from Mercury Vapor (MV) lamps at 3.6 km distance managed to reach
the observatory in the green spectrum. The finding concludes that
the nearby LED spotlight does not affect the night sky brightness
over BCTK. Meanwhile, Langkawi National Observatory (LNO) sky profile
was also observed during heavy fishing season as comparison. The
sky spectra for LNO was similar to BCTK in the reds except for a
very distinct peak in green region corresponding highly with green
MV (532 - 547 nm) with peaks at 536 nm and 546 nm, matches the lamps used for squid fishing
around the island. The intensity of the green MV light matches the intensity of HPS light sources, during the observation period
of peak squid season in January. This made LNO a far less favorable
condition for astronomical observing site compared to BCTK. We also
found that LNO sky has brightened 3.767 times compared to finding
of 2013.
Keywords: Light pollution; observatory;
sky brightness; sky glow
ABSTRAK
Cerapan dan analisis spektrum telah dijalankan
bagi mengenal pasti penyumbang utama kepada pencemaran cahaya di
dua balai cerap paling aktif di Malaysia. Hasil kajian mendapati
punca utama pencemaran langit di BCTK adalah daripada lampu jalan
HPS (High Pressure Sodium). Ia berpunca daripada jumlah penggunaan
terbanyak dan kepadatan yang tinggi dalam lingkungan jarak 5 km.
Garisan pancaran HPS mendominasi spektrum langit BCTK pada 556
- 640 nm, selaras dengan warna jingga langit yang
dilihat dengan mata kasar. Pancaran HPS amat kuat sehingga tiada langsung kesan
spektrum daripada lampu sorot LED kurang dari 1 km dari BCTK. Walau
bagaimanapun, garisan pancaran lampu wap raksa lebih kurang 3.6
km daripada BCTK dapat dilihat pada panjang gelombang 535.7 nm. Kajian mendapati lampu LED di kawasan bersebelahan
tidak memberi sebarang kesan kepada pencemaran langit BCTK. Sebagai
perbandingan, spektrum langit Observatori Negara Langkawi (ONL)
pada musim mencandat sotong juga digunakan dalam kajian ini. Spektrum
cahaya langit ONL hampir menyerupai BCTK dalam cahaya merah, tetapi
dengan tambahan garisan pancaran hijau yang amat jelas pada 536
nm dan 546 nm, iaitu sepadan dengan lampu merkuri hijau yang digunakan oleh bot mencandat
sotong sekitar Langkawi. Keamatan cahaya daripada lampu merkuri
hijau menandingi keamatan lampu HPS pada waktu cerapan dibuat pada bulan Januari.
Ini menunjukkan pada waktu tertentu, langit ONL adalah lebih tercemar
berbanding langit di BCTK untuk pencerapan astronomi. Kajian ini
juga mendapati peningkatan tahap kecerahan langit LNO yang meningkat
3.767 kali ganda berbanding cerapan yang dibuat pada tahun 2013.
Kata kunci: Balai cerap; kecerahan
langit; pencemaran cahaya; spectrum
RUJUKAN
Chow,
C.N. & Luo, S.C. 2017. Limiting magnitudes and night sky brightness at the
Langkawi National Observatory based on observations of standard stars. Journal of Physics: Conference Series JPCS. p.
852.
Cinzano,
P. & Falchi, F. 2013. Quantifying light pollution. Journal of Quantitative Spectroscopy and Radiative Transfer 139:
13-20.
Cinzano,
P. & Falchi, F. 2001. The first world atlas of the artificial night sky
brightness. Monthly Notices of the Royal
Astronomical Society 328(3): 689-707.
Cinzano,
P. 2007. Report on Sky Quality Meter. ISTIL
Internal Report 0.9: 1-5.
Cinzano,
P. 2005. Night sky photometry with sky quality meter. ISTIL Internal Report 9: 1.4.
Duriscoe,
D.M. 2016. Photometric indicators of visual night sky quality derived from
all-sky brightness maps. Journal of
Quantitative Spectroscopy and Radiative Transfer 181: 33-45.
Duriscoe,
D.M., Luginbuhl, C.B. & Moore, C.A. 2007. Measuring night-sky brightness
with a wide-field CCD camera. Astronomical
Society of the Pacific 119: 852.
Falchi,
F., Cinzano, P., Elvidge, C.D., Keith, D.M. & Haim, A. 2011. Limiting the
impact of light pollution on human health, environment and stellar visibility. Journal of Environmental Management 92(10): 2714-2722.
Garstang,
R.H. 1986. Model for artificial night-sky illumination. Astronomical Society of the Pacific 98(601): 364-375.
Hänel,
A., Posch, T., Ribas, S.J., Aubée, M., Duriscoe, D., Jechow, A., Kollath, Z.,
Lolkemai, D.E., Moore, C., Schmidt, N., Spoelstra, H., Wuchterl, G. & Kyba,
C.C.M. 2018. Measuring night sky brightness: Methods and challenges. Journal of Quantitative Spectroscopy &
Radiative Transfer 205: 278-290.
Hoag,
A.A. 1972. Observatories and city lights - One city fights light pollution. Mercury 1(5): 2.
Holker,
F., Wolter, C., Perkin, E.K. & Tockner, K. 2010. Light pollution as a
biodiversity threat. Trends in Ecology
& Evolution 25(12): 681-682.
Ibrahim,
I.A., Safiai, M.H., Jansari, E.A., Ahmad, D.Y., Mohd, A.H., Mohd, B. &
Hehsan, A. 2017. Observatories in Malaysia: Descendants of Islamic civilization
superiority. International Journal of
Civil Engineering and Technology 8: 782-795.
Kamarudin,
F. 2019. Ilmu Falak dan Masyarakat di
Nusantara: Astronomi Islam, Astronomi Cerapan, Astronomi Komuniti dan Astronomi
Kebudayaan. Volume 1. Tanjong Malim, Perak, Malaysia. Institut Tanah dan
Ukur Negara (INSTUN). pp: 91-96.
Kyba,
C.C.M., Ruhtz, T., Fischer, J.R. & Ho¨lker, F. 2011. Cloud coverage acts as
an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6(3): e17307.
Lamphar,
S. & Kocifaj, M. 2016. Urban artificial light emission function determined
experimentally using night sky images. Journal
of Quantitative Spectroscopy and Radiative Transfer 181: 87-95.
Romanishin,
W. 2006. An Introduction to Astronomical Photometry using CCDs. Oklahoma:
University of Oklahoma. Accessed from http://observatory.ou.edu.
Tahar,
M.R. & Ahmad, N. 2019. Ilmu Falak dan
Masyarakat di Nusantara: Astronomi Islam, Astronomi Cerapan, Astronomi Komuniti
dan Astronomi Kebudayaan. Volume 1. Tanjong Malim, Perak, Malaysia:
Institut Tanah dan Ukur Negara (INSTUN). pp: 197-202.
Tahar,
M.R. & Kamarudin, F. 2014. Mapping Langkawi island sky brightness 2013.
Paper presented at the International
Conference on Space, Aeronautical and Navigational Electronics 2014, Ramada
Hotel Melaka, Melaka, Malaysia.
Tahar,
M.R., Kamarudin, F., Umar, R., Kamarudin, M.K.A., Sabri, H.S., Ahmad, K.,
Rahim, S.A. & Baharim, M.S.A. 2017. Spatial model of sky brightness
magnitude in Langkawi Island, Malaysia. Research
in Astronomy & Astrophysics 17(4): 037.
*Pengarang
untuk surat-menyurat; email: n_ahmad@um.edu.my
|