Sains Malaysiana
49(3)(2020): 635-642
http://dx.doi.org/10.17576/jsm-2020-4903-18
DNA Methylation Analysis of AKT1 Promoter and HTR2A Exon-I of Malaysian Schizophrenia Multiplex Families with Lower Cognitive Performance
(Analisis Metilasi DNA Promoter AKT1 dan Exon-I HTR2A pada Keluarga Skizofrenia di Malaysia
dengan Prestasi Kognitif Rendah)
ERNA LAERE1,
TZE JEN CHOW2, PEK YEE TANG2, SIEW YIM LOH3, HOI SEN YONG4, ABDUL
KADIR, ABU BAKAR5 & SHIAU FOON TEE1*
1Lee Kong Chian, Faculty of Engineering and Science, Department of Chemical
Engineering, Universiti Tunku
Abdul Rahman, Jalan Sungai Long, Bandar
Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia
2Lee Kong Chian, Faculty of Engineering and Science, Department of Mechatronics
and Biomedical Engineering, Universiti
Tunku Abdul Rahman, Jalan Sungai
Long, Bandar Sungai Long, Cheras 43000
Kajang, Selangor Darul Ehsan, Malaysia
3Faculty of Medicine, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
4Institute of Biological
Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
5Jalan Persiaran Kempas Baru, 81200 Johor Bahru, Johor Darul Takzim, Malaysia
Diserahkan: 2 Oktober
2018/Diterima: 6 Mac 2019
ABSTRACT
Dysfunction of cognitive performance
in schizophrenia has been associated with aberrant alteration of
DNA methylation of several schizophrenia-risk genes. AKT1 and
HTR2A are among the candidate genes for schizophrenia. Their
expressions were found reduced in schizophrenia patients. Thus,
we aimed to study the methylation status of AKT1 promoter
and HTR2A exon-I in Malaysian
schizophrenia patients and their affected family members. In this
study, each participant was required to perform Trail Making Test
(TMT) part A and B to measure their cognitive performance. Genomic
DNA extracted from the peripheral blood of 12 Malaysian schizophrenia
families and 12 controls families, was subjected to bisulfite conversion.
The methylation status of CpG sites of AKT1 promoter at Chr14: 104796054 and
HTR2A exon-I at Chr13: 46896918
were identified using methylation-specific polymerase chain reaction (MSP). Our results
showed that schizophrenia patients performed worse in both TMT-A
and B (p<0.0001) than healthy controls. The patients also displayed
significantly (p=0.023) high level of methylation in AKT1 promoter compared to
controls. Meanwhile, no significant difference (p=0.248) in methylation
status was observed in HTR2A exon-I
between schizophrenia and control groups. Therefore, methylation
of AKT1 promoter in peripheral bloods of patients may involve
in cognitive impairment and schizophrenia pathology. In addition,
we were able to demonstrate the heritability of DNA methylation
status across family members.
Keywords: Cognitive performance;
DNA methylation; schizophrenia; Trail-Making Test
Abstrak
Disfungsi prestasi kognitif dalam skizofrenia telah dikaitkan dengan perubahan metilasi DNA pada beberapa gen yang berisiko menyebabkan skizofrenia. AKT1 dan HTR2A adalah antara calon gen kepada skizofrenia. Ekspresi gen-gen tersebut didapati berkurangan pada pesakit skizofrenia. Oleh itu,
kertas ini bertujuan untuk mengkaji status metilasi promoter AKT1 dan exon-I HTR2A pada pesakit skizofrenia di Malaysia
dan juga ahli keluarga mereka
yang menghidap skizofrenia.
Dalam kajian
ini, setiap peserta
dikehendaki melakukan
Ujian Membuat Jejak
(TMT) bahagian A dan
B untuk mengukur prestasi kognitif mereka. DNA genom yang telah diekstrak daripada darah periferal 12 keluarga skizofrenia di Malaysia dan 12 keluarga kawalan sihat, tertakluk kepada penukaran bisulfite. Status
metilasi tapak
CpG dalam promoter AKT1 di
Chr14: 104796054 dan dalam
exon-I HTR2A di Chr13: 46896918 dikaji
dengan menggunakan
metilasi-khusus
tindak balas
rantaian polimerase
(MSP). Keputusan menunjukkan bahawa pesakit skizofrenia mendapat keputusan yang teruk dalam kedua-dua bahagian TMT-A dan B (p<0.0001) berbanding dengan kawalan sihat. Pesakit skizofrenia juga menunjukkan tahap metilasi promoter AKT1 yang
tinggi secara
signifikan berbanding
dengan kawalan
(p=0.023). Sementara itu, tiada perbezaan yang signifikan (p=0.248) diperhatikan
dalam metilasi
status exon-I HTR2A antara kumpulan skizofrenia dan kawalan
sihat. Kertas
ini menunjukkan bahawa metilasi promoter AKT1 dalam darah periferal pesakit skizofrenia mungkin terlibat dalam kecacatan kognitif dan patologi skizofrenia.
Tambahan pula, kami dapat
menunjukkan bahawa kewarisan status metilasi DNA dalam kalangan ahli keluarga.
Kata kunci: Metilasi DNA; prestasi kognitif; skizofrenia; Ujian Membuat Jejak
RUJUKAN
Abdolmaleky, H.M., Pajouhanfar,
S., Faghankhani, M., Joghataei,
M.T., Mostafavi, A. & Thiagalingam,
S. 2015. Antipsychotic drugs attenuate aberrant DNA methylation
of DTNBP1 (Dysbindin) promoter in saliva and post-mortem brain of
patients with schizophrenia and psychotic bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 168(8): 687-696.
Abdolmaleky, H.M., Yaqubi, S., Papageorgis,
P., Lambert, A.W., Ozturk, S., Sivaraman, V. & Thiagalingam,
S. 2011. Epigenetic dysregulation of HTR2A in the brain of patients
with schizophrenia and bipolar disorder. Schizophrenia
Research 129(2-3): 183-190.
Abi-Saab,
W.M., Bubser, M., Roth, R.H. & Deutch, A.Y. 1999. 5-HT2 receptor
regulation of extracellular GABA levels in the prefrontal cortex.
Neuropsychopharmacology 20(1): 92-96.
Bajestan,
S.N., Sabouri, A.H., Nakamura, M., Takashima, H., Keikhaee, M.R.,
Behdani, F., Fayyazi, M.R., Sargolzaee, M.R., Bajestan, M.N., Sabouri,
Z., Khayami, E., Haghighi, S., Hashemi, S.B., Eiraku, N., Tufani,
H., Najmabadi, H., Arimura, K., Sano, A. & Osame, M. 2006. Association
of AKT1 haplotype with the risk of schizophrenia in Iranian population.
American Journal of Medical
Genetics, Part B: Neuropsychiatric Genetics 141B(4): 383-386.
Balu,
D.T., Carlson, G.C., Talbot, K., Kazi, H., Hill-Smith, T.E., Easton,
R.M., Birnbaum, M.J. & Lucki, I. 2012. AKT1 deficiency in schizophrenia
and impairment of hippocampal plasticity and function. Hippocampus 22(2): 230-240.
Bowie,
C.R. & Harvey, P.D. 2006. Cognitive deficits and functional outcome in schizophrenia.
Neuropsychiatric Disease and
Treatment 2(4): 531-536.
Chang,
C.Y., Chen, Y.W., Wang, T.W. & Lai, W.S. 2016. Akting up in the GABA
hypothesis of schizophrenia: AKT1 deficiency modulates GABAergic
functions and hippocampus-dependent functions. Scientific
Reports 6: 33095.
Cheah,
S.Y., Lawford, B.R., Young, R.M., Morris, C.P. & Voisey, J. 2017. mRNA expression and DNA methylation
analysis of serotonin receptor 2A (HTR2A) in the human schizophrenic
brain. Genes 8(1): 1-11.
Chouliaras,
L., Pishva, E., Haapakoski, R., Zsoldos, E., Mahmood, A., Filippini,
N., Burrage, J., Mill, J., Kivimäki, M., Lunnon, K. & Ebmeier,
K.P. 2018. Peripheral DNA methylation, cognitive decline and brain
aging: Pilot findings from the Whitehall II imaging study. Epigenomics
10(5): 585-595.
Connor,
C.M. & Akbarian, S. 2008. DNA methylation changes in schizophrenia
and bipolar disorder. Epigenetics
3(2): 55-58.
Dean,
B. & Hayes, W. 1996. Decreased frontal cortical serotonin(2A)
receptors in schizophrenia. Schizophrenia
Research 21(3): 133-139.
Dickinson,
D., Ramsey, M.E. & Gold, J.M. 2007. Overlooking the obvious:
A meta-analytic comparison of digit symbol coding tasks and other
cognitive measures in schizophrenia. Archives
of General Psychiatry 64(5): 532-542.
Eggers,
A.E. 2013. A serotonin hypothesis of schizophrenia. Medical Hypotheses 80(6): 791-794.
Emamian,
E.S., Hall, D., Birnbaum, M.J., Karayiorgou, M. & Gogos, J.A.
2004. Convergent evidence for impaired AKT1-GSK3 β signaling
in schizophrenia. Nature Genetics 36(2): 131-137.
Frances,
A. 2013. Saving normal: An insider's revolt against out-of-control
psychiatric diagnosis, DSM-5, big pharma and the medicalization
of ordinary life. Psychotherapy in Australia 19(3): 14-18.
Garbett,
K., Gal-Chis, R., Gaszner, G., Lewis, D.A. & Mirnics, K. 2008.
Transcriptome alterations in the prefrontal cortex of subjects with
schizophrenia who committed suicide. Neuropsychopharmacologia
Hungarica 10(1): 9-14.
Gejman,
P.V., Sanders, A.R. & Duan, J. 2010. The role of genetics in
the etiology of schizophrenia. Psychiatric
Clinics of North America 33(1): 35-66.
Ghadirivasfi,
M., Nohesara, S., Ahmad Khaniha, H.R., Eskandari, M.R., Mostafavi,
S., Thiagalingam, S. & Abdolmaleky, H.M. 2011.
Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at
T102C polymorphic site in DNA derived from the saliva of patients
with schizophrenia and bipolar disorder. American
Journal of Medical Genetics Part B 156B(5): 536-545.
Gibney,
E.R. & Nolan, C.M. 2010. Epigenetics and gene expression. Heredity 105(1): 4-13.
González-Maeso,
J., Weisstaub, N.V., Zhou, M., Chan, P., Ivic, L., Ang, R., Lira,
A., Bradley-Moore, M., Ge, Y., Zhou, Q., Sealfon, S.C. & Gingrich,
J.A. 2007. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated
signaling pathways to affect behavior. Neuron
53(3): 439-452.
Green,
M., Kern, R.S., Braff, D.L. & Mintz, J. 2000. Neurocognitive
deficits and functional outcome in schizophrenia: Are we measuring
the ‘right stuff’? Schizophrenia Bulletin 26(1): 119-136.
Gu,
L., Long, J., Yan, Y., Chen, Q., Pan, R., Xie, X., Mao, X., Hu,
X., Wei, B. & Su, L. 2013. HTR2A-1438A/G polymorphism influences the risk of
schizophrenia but not bipolar disorder or major depressive disorder:
A meta-analysis. Journal of
Neuroscience Research 91(5): 623-633.
Herman,
J.G. & Baylin, S.B. 2003. Gene silencing in cancer in association
with promoter hypermethylation. New
England Journal of Medicine 349(21): 2042-2054.
Hurlemann,
R., Matusch, A., Kuhn, K.U., Berning, J., Elmenhorst, D., Winz,
O., Kolsch, H., Zilles, K., Wagner, M., Maier, W. & Bauer, A.
2008. 5-HT2A receptor density is decreased in the at-risk mental
state. Psychopharmacology
195(4): 579-590.
Ikeda,
M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita,
Y., Inada, T. & Ozaki, N. 2004. Association of AKT1 with schizophrenia
confirmed in a Japanese population. Biological
Psychiatry 56(9): 698-700.
Jones,
M.J., Farré, P., McEwen, L.M., Macisaac, J.L., Watt, K., Neumann,
S.M., Emberly, E., Cynader, M.S., Virji-Babul, N. & Kobor, M.S.
2013. Distinct DNA methylation patterns of cognitive impairment
and Trisomy 21 in down syndrome. BMC
Medical Genomics 6: 58.
Jones,
P.A. & Laird, P.W. 1999. Cancer epigenetics comes of age. Nature Genetics 21(2): 163-167.
Lam,
L.L., Emberly, E., Fraser, H.B., Neumann, S.M., Chen, E., Miller,
G.E. & Kobor, M.S. 2012. Factors underlying variable DNA methylation
in a human community cohort. Proceedings
of the National Academy of Sciences 109(2): 17253-17560.
Lee,
S. & Huang, K. 2016. Epigenetic profiling of human brain differential
DNA methylation networks in schizophrenia. BMC
Medical Genomics 9(3): 217-228.
Lewis,
J.D., Meehan, R.R., Henzel, W.J.,
Maurer-Fogy, I., Jeppesen, P., Klein, F. & Bird, A. 1992. Purification,
sequence, and cellular localization of a novel chromosomal protein
that binds to methylated DNA. Cell
69(6): 905-914.
Lezak,
M.D. 1987. Assessment for rehabilitation planning. In Neuropsychological Rehabilitation, edited by Meier, M.J., Benton,
A.L. & Diller, L. New York: Guilford Press. pp. 41-58.
Long,
M.D., Smiraglia, D.J. & Campbell, M.J. 2017. The genomic impact
of DNA CpG methylation on gene expression: Relationships in prostate
cancer. Biomolecules 7(1): 1-20.
Marioni,
R.E., Shah, S., McRae, A.F., Ritchie, S.J., Muniz-Terrera, G., Harris,
S.E., Gibson, J., Redmond, P., Cox, S.R., Pattie, A., Corley, J.,
Taylor, A., Murphy, L. Starr, J.M., Horvath, S., Visscher, P.M.,
Wray, N.R. & Deary, I.J. 2015. The epigenetic clock is correlated
with physical and cognitive fitness in the Lothian Birth cohort
1936. International Journal
of Epidemiology 44(4): 1388-1396.
Mittal,
P.K., Mehta, S., Solanki, R.K. & Swami, M.K. 2013. A comparative
study of cognitive flexibility among first episode and multi-episode
young schizophrenia patients. German
Journal of Psychiatry 16(4): 130-136.
Monsell,
S. 1996. Control of mental processes. In Unsolved
Mysteries of the Mind: Tutorial Essays in Cognition, edited
by Bruce, V. Oxford, England: Erlbaum (UK): Taylor & Francis.
pp. 93-148.
Myers,
R.L., Airey, D.C., Manier, D.H., Shelton, R.C. & Sanders-Bush,
E. 2007. Polymorphisms in the regulatory region of the human serotonin
5-HT2A receptor gene (HTR2A) influence gene expression. Biol.
Psychiatry 61(12): 167-173.
Nishioka,
M., Bundo, M., Kasai, K. & Iwamoto, K. 2012. DNA methylation
in schizophrenia: Progress and challenges of epigenetic studies.
Genome Medicine 4(12): 1-13.
Perianez, J.A., Rios-Lago, M., Rodriguez-Sanchez, J.M.,
Adrover-Roig, D., Sanchez-Cubillo, I., Crespo-Facorro, B., Quemada,
J.I. & Barcelo, F. 2007. Trail
making test in traumatic brain injury, schizophrenia, and normal
ageing: Sample comparisons and normative data. Archives
of Clinical Neuropsychology 22(4): 433-447.
Razin,
A. & Cedar, H. 1991. DNA methylation and gene expression. Microbiological Reviews 55(3): 451-458.
Reichenberg,
A. & Harvey, P.D. 2007. Neuropsychological impairments in schizophrenia:
Integration of performance-based
and brain imaging findings. Psychological Bulletin 133(5): 833-858.
Reitan,
R.M. 1992. Trail Making Test: Manual for Administration and Scoring. Tucson, Arizona: Reitan
Neuropsychology Laboratory.
Salleh,
M.R. 2004. The genetics of schizophrenia. The
Malaysian Journal of Medical Sciences: MJMS 11(2): 3-11.
Salthouse,
T.A. 2011. What cognitive abilities are involved in trail-Making
performance? Intelligence 39(4): 222-232.
Schmid,
C.L. & Bohn, L.M. 2010. Serotonin, but not N-Methyltryptamines,
activates the serotonin 2A receptor via
a β-Arrestin2/Src/Akt signaling complex in
vivo. Journal of Neuroscience
30(40): 13513-13524.
Schwab,
S.G., Hoefgen, B., Hanses, C., Hassenbach, M.B., Albus, M., Lerer,
B., Trixler, M., Maier. & Wildenauer, D.B. 2005. Further evidence
for association of variants in the AKT1 gene with schizophrenia
in a sample of European sib-pair families. Biological
Psychiatry 58(6): 446-450.
Schwartz,
T.L., Sachdeva, S. & Stahl, S.M. 2012. Glutamate neurocircuitry:
Theoretical underpinnings in schizophrenia. Frontiers
in Pharmacology 3: 195-205.
Shen,
R.Y. & Andrade, R. 1998. 5-Hydroxytryptamine2 receptor facilitates
GABAergic neurotransmission in rat hippocampus. Journal of Pharmacology and Experimental Therapeutics 285(2): 805-812.
Souza,
B.R., Romano-Silva, M.A. & Tropepe, V. 2011. Dopamine D2 receptor
activity modulates Akt signaling and alters GABAergic neuron development
and motor behavior in Zebrafish larvae. The
Journal of Neuroscience 31(14): 5512-5525.
Sujitha,
S.P., Nair, A., Banerjee, M., Lakshmanan, S., Harshavaradhan, S.,
Gunasekaran, S. & Gopinathan, A. 2014. 5-Hydroxytryptamine (Serotonin)
2A receptor gene polymorphism is associated with schizophrenia.
Indian Journal of Medical Research 140(6): 736-743.
Tee,
S.F., Chow, T.J., Tang, P.Y. & Loh, H.C. 2010. Linkage of schizophrenia
with TPH2 and 5-HTR2A gene polymorphisms in the Malay population.
Genetics and Molecular Research 9(3): 1274-1278.
Thiselton,
D.L., Vladimirov, V.I., Kuo, P.H., McClay, J., Wormley, B., Fanous,
A., O’Neill, F.A., Walsh, D., Van den Oord, E.J.C.G., Kendler, K.S.
& Riley, B.P. 2008. AKT1 is associated with schizophrenia across
multiple symptom dimensions in the Irish study of high density schizophrenia
families. Biological Psychiatry 63(5): 449-457.
Tombaugh,
T.N. 2004. Trail making test A and B: Normative data stratified
by age and education. Archives
of Clinical Neuropsychology 19(2): 203-214.
van
Beveren, N.J.M., Buitendijk, G.H.S., Swagemakers, S., Krab, L.C.,
Röder, C., de Haan, L., van der Spek, P. & Elgersma, Y. 2012.
Marked reduction of AKT1 expression and deregulation of AKT1-associated
pathways in peripheral blood mononuclear cells of schizophrenia
patients. PLoS ONE 7(2): e32618.
Vanheule,
S., Desmet, M., Meganck, R., Inslegers, R., Willemsen, J., De Schryver,
M. & Devisch, I. 2014. Reliability in psychiatric diagnosis
with the DSM: Old wine in new barrels. Psychotherapy
and Psychosomatics 83(5): 313-314.
Volk,
D.W. & Lewis, D.A. 2005. GABA targets for the treatment of cognitive
dysfunction in schizophrenia. Current
Neuropharmacology 3(1): 45-62.
Williams,
J., Spurlock, G., McGuffin, P., Mallet, J., Nothen, M.M., Gill,
M., Aschauer, H., Nylander, P.O., Macciardi, F. & Owen, M.J.
1996. Association between schizophrenia and T102C polymorphism of
the 5-hydroxytryptamine type 2a-receptor gene. The
Lancet 347(9011): 1294-1296.
Wockner,
L.F., Noble, E.P., Lawford, B.R., Young, R., Morris, C.P.C., Whitehall,
V.L.J. & Voisey, J. 2014. Genome-wide DNA methylation analysis
of human brain tissue from schizophrenia patients. Translational
Psychiatry 4: e339.
Zamani,
A. & Qu, Z. 2012. Serotonin activates angiogenic phosphorylation
signaling in human endothelial cells. FEBS
Letters 586(16): 2360-2365.
*Pengarang
untuk surat-menyurat;
email: teesf@utar.edu.my
|