Sains Malaysiana 49(3)(2020): 635-642

http://dx.doi.org/10.17576/jsm-2020-4903-18

 

DNA Methylation Analysis of AKT1 Promoter and HTR2A Exon-I of Malaysian Schizophrenia Multiplex Families with Lower Cognitive Performance

(Analisis Metilasi DNA Promoter AKT1 dan Exon-I HTR2A pada Keluarga Skizofrenia di Malaysia dengan Prestasi Kognitif Rendah)

 

ERNA LAERE1, TZE JEN CHOW2, PEK YEE TANG2, SIEW YIM LOH3, HOI SEN YONG4, ABDUL KADIR, ABU BAKAR5 & SHIAU FOON TEE1*

 

1Lee Kong Chian, Faculty of Engineering and Science, Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

2Lee Kong Chian, Faculty of Engineering and Science, Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

3Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

4Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

5Jalan Persiaran Kempas Baru, 81200 Johor Bahru, Johor Darul Takzim, Malaysia

 

Diserahkan: 2 Oktober 2018/Diterima: 6 Mac 2019

 

ABSTRACT

Dysfunction of cognitive performance in schizophrenia has been associated with aberrant alteration of DNA methylation of several schizophrenia-risk genes. AKT1 and HTR2A are among the candidate genes for schizophrenia. Their expressions were found reduced in schizophrenia patients. Thus, we aimed to study the methylation status of AKT1 promoter and HTR2A exon-I in Malaysian schizophrenia patients and their affected family members. In this study, each participant was required to perform Trail Making Test (TMT) part A and B to measure their cognitive performance. Genomic DNA extracted from the peripheral blood of 12 Malaysian schizophrenia families and 12 controls families, was subjected to bisulfite conversion. The methylation status of CpG sites of AKT1 promoter at Chr14: 104796054 and HTR2A exon-I at Chr13: 46896918 were identified using methylation-specific polymerase chain reaction (MSP). Our results showed that schizophrenia patients performed worse in both TMT-A and B (p<0.0001) than healthy controls. The patients also displayed significantly (p=0.023) high level of methylation in AKT1 promoter compared to controls. Meanwhile, no significant difference (p=0.248) in methylation status was observed in HTR2A exon-I between schizophrenia and control groups. Therefore, methylation of AKT1 promoter in peripheral bloods of patients may involve in cognitive impairment and schizophrenia pathology. In addition, we were able to demonstrate the heritability of DNA methylation status across family members.

 

Keywords: Cognitive performance; DNA methylation; schizophrenia; Trail-Making Test

 

Abstrak

Disfungsi prestasi kognitif dalam skizofrenia telah dikaitkan dengan perubahan metilasi DNA pada beberapa gen yang berisiko menyebabkan skizofrenia. AKT1 dan HTR2A adalah antara calon gen kepada skizofrenia. Ekspresi gen-gen tersebut didapati berkurangan pada pesakit skizofrenia. Oleh itu, kertas ini bertujuan untuk mengkaji status metilasi promoter AKT1 dan exon-I HTR2A pada pesakit skizofrenia di Malaysia dan juga ahli keluarga mereka yang menghidap skizofrenia. Dalam kajian ini, setiap peserta dikehendaki melakukan Ujian Membuat Jejak (TMT) bahagian A dan B untuk mengukur prestasi kognitif mereka. DNA genom yang telah diekstrak daripada darah periferal 12 keluarga skizofrenia di Malaysia dan 12 keluarga kawalan sihat, tertakluk kepada penukaran bisulfite. Status metilasi tapak CpG dalam promoter AKT1 di Chr14: 104796054 dan dalam exon-I HTR2A di Chr13: 46896918 dikaji dengan menggunakan metilasi-khusus tindak balas rantaian polimerase (MSP). Keputusan menunjukkan bahawa pesakit skizofrenia mendapat keputusan yang teruk dalam kedua-dua bahagian TMT-A dan B (p<0.0001) berbanding dengan kawalan sihat. Pesakit skizofrenia juga menunjukkan tahap metilasi promoter AKT1 yang tinggi secara signifikan berbanding dengan kawalan (p=0.023). Sementara itu, tiada perbezaan yang signifikan (p=0.248) diperhatikan dalam metilasi status exon-I HTR2A antara kumpulan skizofrenia dan kawalan sihat. Kertas ini menunjukkan bahawa metilasi promoter AKT1 dalam darah periferal pesakit skizofrenia mungkin terlibat dalam kecacatan kognitif dan patologi skizofrenia. Tambahan pula, kami dapat menunjukkan bahawa kewarisan status metilasi DNA dalam kalangan ahli keluarga.

 

Kata kunci: Metilasi DNA; prestasi kognitif; skizofrenia; Ujian Membuat Jejak

 

RUJUKAN

Abdolmaleky, H.M., Pajouhanfar, S., Faghankhani, M., Joghataei, M.T., Mostafavi, A. & Thiagalingam, S. 2015. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (Dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and psychotic bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 168(8): 687-696.

Abdolmaleky, H.M., Yaqubi, S., Papageorgis, P., Lambert, A.W., Ozturk, S., Sivaraman, V. & Thiagalingam, S. 2011. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophrenia Research 129(2-3): 183-190.

Abi-Saab, W.M., Bubser, M., Roth, R.H. & Deutch, A.Y. 1999. 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. Neuropsychopharmacology 20(1): 92-96.

Bajestan, S.N., Sabouri, A.H., Nakamura, M., Takashima, H., Keikhaee, M.R., Behdani, F., Fayyazi, M.R., Sargolzaee, M.R., Bajestan, M.N., Sabouri, Z., Khayami, E., Haghighi, S., Hashemi, S.B., Eiraku, N., Tufani, H., Najmabadi, H., Arimura, K., Sano, A. & Osame, M. 2006. Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. American Journal of Medical Genetics, Part B: Neuropsychiatric Genetics 141B(4): 383-386.

Balu, D.T., Carlson, G.C., Talbot, K., Kazi, H., Hill-Smith, T.E., Easton, R.M., Birnbaum, M.J. & Lucki, I. 2012. AKT1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus 22(2): 230-240.

Bowie, C.R. & Harvey, P.D. 2006. Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric Disease and Treatment 2(4): 531-536.

Chang, C.Y., Chen, Y.W., Wang, T.W. & Lai, W.S. 2016. Akting up in the GABA hypothesis of schizophrenia: AKT1 deficiency modulates GABAergic functions and hippocampus-dependent functions. Scientific Reports 6: 33095.

Cheah, S.Y., Lawford, B.R., Young, R.M., Morris, C.P. & Voisey, J. 2017. mRNA expression and DNA methylation analysis of serotonin receptor 2A (HTR2A) in the human schizophrenic brain. Genes 8(1): 1-11.

Chouliaras, L., Pishva, E., Haapakoski, R., Zsoldos, E., Mahmood, A., Filippini, N., Burrage, J., Mill, J., Kivimäki, M., Lunnon, K. & Ebmeier, K.P. 2018. Peripheral DNA methylation, cognitive decline and brain aging: Pilot findings from the Whitehall II imaging study. Epigenomics 10(5): 585-595.

Connor, C.M. & Akbarian, S. 2008. DNA methylation changes in schizophrenia and bipolar disorder. Epigenetics 3(2): 55-58.

Dean, B. & Hayes, W. 1996. Decreased frontal cortical serotonin(2A) receptors in schizophrenia. Schizophrenia Research 21(3): 133-139.

Dickinson, D., Ramsey, M.E. & Gold, J.M. 2007. Overlooking the obvious: A meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry 64(5): 532-542.

Eggers, A.E. 2013. A serotonin hypothesis of schizophrenia. Medical Hypotheses 80(6): 791-794.

Emamian, E.S., Hall, D., Birnbaum, M.J., Karayiorgou, M. & Gogos, J.A. 2004. Convergent evidence for impaired AKT1-GSK3 β signaling in schizophrenia. Nature Genetics 36(2): 131-137.

Frances, A. 2013. Saving normal: An insider's revolt against out-of-control psychiatric diagnosis, DSM-5, big pharma and the medicalization of ordinary life. Psychotherapy in Australia 19(3): 14-18.

Garbett, K., Gal-Chis, R., Gaszner, G., Lewis, D.A. & Mirnics, K. 2008. Transcriptome alterations in the prefrontal cortex of subjects with schizophrenia who committed suicide. Neuropsychopharmacologia Hungarica 10(1): 9-14.

Gejman, P.V., Sanders, A.R. & Duan, J. 2010. The role of genetics in the etiology of schizophrenia. Psychiatric Clinics of North America 33(1): 35-66.

Ghadirivasfi, M., Nohesara, S., Ahmad Khaniha, H.R., Eskandari, M.R., Mostafavi, S.,  Thiagalingam, S. & Abdolmaleky, H.M. 2011. Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B 156B(5): 536-545.

Gibney, E.R. & Nolan, C.M. 2010. Epigenetics and gene expression. Heredity 105(1): 4-13.

González-Maeso, J., Weisstaub, N.V., Zhou, M., Chan, P., Ivic, L., Ang, R., Lira, A., Bradley-Moore, M., Ge, Y., Zhou, Q., Sealfon, S.C. & Gingrich, J.A. 2007. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53(3): 439-452.

Green, M., Kern, R.S., Braff, D.L. & Mintz, J. 2000. Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the ‘right stuff’? Schizophrenia Bulletin 26(1): 119-136.

Gu, L., Long, J., Yan, Y., Chen, Q., Pan, R., Xie, X., Mao, X., Hu, X., Wei, B. & Su, L. 2013. HTR2A-1438A/G polymorphism influences the risk of schizophrenia but not bipolar disorder or major depressive disorder: A meta-analysis. Journal of Neuroscience Research 91(5): 623-633.

Herman, J.G. & Baylin, S.B. 2003. Gene silencing in cancer in association with promoter hypermethylation. New England Journal of Medicine 349(21): 2042-2054.

Hurlemann, R., Matusch, A., Kuhn, K.U., Berning, J., Elmenhorst, D., Winz, O., Kolsch, H., Zilles, K., Wagner, M., Maier, W. & Bauer, A. 2008. 5-HT2A receptor density is decreased in the at-risk mental state. Psychopharmacology 195(4): 579-590.

Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., Inada, T. & Ozaki, N. 2004. Association of AKT1 with schizophrenia confirmed in a Japanese population. Biological Psychiatry 56(9): 698-700.

Jones, M.J., Farré, P., McEwen, L.M., Macisaac, J.L., Watt, K., Neumann, S.M., Emberly, E., Cynader, M.S., Virji-Babul, N. & Kobor, M.S. 2013. Distinct DNA methylation patterns of cognitive impairment and Trisomy 21 in down syndrome. BMC Medical Genomics 6: 58.

Jones, P.A. & Laird, P.W. 1999. Cancer epigenetics comes of age. Nature Genetics 21(2): 163-167.

Lam, L.L., Emberly, E., Fraser, H.B., Neumann, S.M., Chen, E., Miller, G.E. & Kobor, M.S. 2012. Factors underlying variable DNA methylation in a human community cohort. Proceedings of the National Academy of Sciences 109(2): 17253-17560.

Lee, S. & Huang, K. 2016. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Medical Genomics 9(3): 217-228.

Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F. & Bird, A. 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6): 905-914.

Lezak, M.D. 1987. Assessment for rehabilitation planning. In Neuropsychological Rehabilitation, edited by Meier, M.J., Benton, A.L. & Diller, L. New York: Guilford Press. pp. 41-58.

Long, M.D., Smiraglia, D.J. & Campbell, M.J. 2017. The genomic impact of DNA CpG methylation on gene expression: Relationships in prostate cancer. Biomolecules 7(1): 1-20.

Marioni, R.E., Shah, S., McRae, A.F., Ritchie, S.J., Muniz-Terrera, G., Harris, S.E., Gibson, J., Redmond, P., Cox, S.R., Pattie, A., Corley, J., Taylor, A., Murphy, L. Starr, J.M., Horvath, S., Visscher, P.M., Wray, N.R. & Deary, I.J. 2015. The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth cohort 1936. International Journal of Epidemiology 44(4): 1388-1396.

Mittal, P.K., Mehta, S., Solanki, R.K. & Swami, M.K. 2013. A comparative study of cognitive flexibility among first episode and multi-episode young schizophrenia patients. German Journal of Psychiatry 16(4): 130-136.

Monsell, S. 1996. Control of mental processes. In Unsolved Mysteries of the Mind: Tutorial Essays in Cognition, edited by Bruce, V. Oxford, England: Erlbaum (UK): Taylor & Francis. pp. 93-148.

Myers, R.L., Airey, D.C., Manier, D.H., Shelton, R.C. & Sanders-Bush, E. 2007. Polymorphisms in the regulatory region of the human serotonin 5-HT2A receptor gene (HTR2A) influence gene expression. Biol. Psychiatry 61(12): 167-173.

Nishioka, M., Bundo, M., Kasai, K. & Iwamoto, K. 2012. DNA methylation in schizophrenia: Progress and challenges of epigenetic studies. Genome Medicine 4(12): 1-13.

Perianez, J.A., Rios-Lago, M., Rodriguez-Sanchez, J.M., Adrover-Roig, D., Sanchez-Cubillo, I., Crespo-Facorro, B., Quemada, J.I. & Barcelo, F. 2007. Trail making test in traumatic brain injury, schizophrenia, and normal ageing: Sample comparisons and normative data. Archives of Clinical Neuropsychology 22(4): 433-447.

Razin, A. & Cedar, H. 1991. DNA methylation and gene expression. Microbiological Reviews 55(3): 451-458.

Reichenberg, A. & Harvey, P.D. 2007. Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin 133(5): 833-858.

Reitan, R.M. 1992. Trail Making Test: Manual for Administration and Scoring. Tucson, Arizona: Reitan Neuropsychology Laboratory.

Salleh, M.R. 2004. The genetics of schizophrenia. The Malaysian Journal of Medical Sciences: MJMS 11(2): 3-11.

Salthouse, T.A. 2011. What cognitive abilities are involved in trail-Making performance? Intelligence 39(4): 222-232.

Schmid, C.L. & Bohn, L.M. 2010. Serotonin, but not N-Methyltryptamines, activates the serotonin 2A receptor via a β-Arrestin2/Src/Akt signaling complex in vivo. Journal of Neuroscience 30(40): 13513-13524.

Schwab, S.G., Hoefgen, B., Hanses, C., Hassenbach, M.B., Albus, M., Lerer, B., Trixler, M., Maier. & Wildenauer, D.B. 2005. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biological Psychiatry 58(6): 446-450.

Schwartz, T.L., Sachdeva, S. & Stahl, S.M. 2012. Glutamate neurocircuitry: Theoretical underpinnings in schizophrenia. Frontiers in Pharmacology 3: 195-205.

Shen, R.Y. & Andrade, R. 1998. 5-Hydroxytryptamine2 receptor facilitates GABAergic neurotransmission in rat hippocampus. Journal of Pharmacology and Experimental Therapeutics 285(2): 805-812.

Souza, B.R., Romano-Silva, M.A. & Tropepe, V. 2011. Dopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in Zebrafish larvae. The Journal of Neuroscience 31(14): 5512-5525.

Sujitha, S.P., Nair, A., Banerjee, M., Lakshmanan, S., Harshavaradhan, S., Gunasekaran, S. & Gopinathan, A. 2014. 5-Hydroxytryptamine (Serotonin) 2A receptor gene polymorphism is associated with schizophrenia. Indian Journal of Medical Research 140(6): 736-743.

Tee, S.F., Chow, T.J., Tang, P.Y. & Loh, H.C. 2010. Linkage of schizophrenia with TPH2 and 5-HTR2A gene polymorphisms in the Malay population. Genetics and Molecular Research 9(3): 1274-1278.

Thiselton, D.L., Vladimirov, V.I., Kuo, P.H., McClay, J., Wormley, B., Fanous, A., O’Neill, F.A., Walsh, D., Van den Oord, E.J.C.G., Kendler, K.S. & Riley, B.P. 2008. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biological Psychiatry 63(5): 449-457.

Tombaugh, T.N. 2004. Trail making test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology 19(2): 203-214.

van Beveren, N.J.M., Buitendijk, G.H.S., Swagemakers, S., Krab, L.C., Röder, C., de Haan, L., van der Spek, P. & Elgersma, Y. 2012. Marked reduction of AKT1 expression and deregulation of AKT1-associated pathways in peripheral blood mononuclear cells of schizophrenia patients. PLoS ONE 7(2): e32618.

Vanheule, S., Desmet, M., Meganck, R., Inslegers, R., Willemsen, J., De Schryver, M. & Devisch, I. 2014. Reliability in psychiatric diagnosis with the DSM: Old wine in new barrels. Psychotherapy and Psychosomatics 83(5): 313-314.

Volk, D.W. & Lewis, D.A. 2005. GABA targets for the treatment of cognitive dysfunction in schizophrenia. Current Neuropharmacology 3(1): 45-62.

Williams, J., Spurlock, G., McGuffin, P., Mallet, J., Nothen, M.M., Gill, M., Aschauer, H., Nylander, P.O., Macciardi, F. & Owen, M.J. 1996. Association between schizophrenia and T102C polymorphism of the 5-hydroxytryptamine type 2a-receptor gene. The Lancet 347(9011): 1294-1296.

Wockner, L.F., Noble, E.P., Lawford, B.R., Young, R., Morris, C.P.C., Whitehall, V.L.J. & Voisey, J. 2014. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Translational Psychiatry 4: e339.

Zamani, A. & Qu, Z. 2012. Serotonin activates angiogenic phosphorylation signaling in human endothelial cells. FEBS Letters 586(16): 2360-2365.

 

*Pengarang untuk surat-menyurat; email: teesf@utar.edu.my

 

 

 

 

 

sebelumnya