Sains Malaysiana 49(4)(2020): 785-792
http://dx.doi.org/10.17576/jsm-2020-4904-07
Interferon Gamma Release Assay, A
Powerful Tool for the Detection of Human and Bovine Tuberculosis in the Greater
Cairo Area Compared to Other Diagnostic Tools
(Asai Pelepasan Gama Interferon, Suatu Alat Penting untuk Pengesanan Tuberkulosis Manusia dan Bovin di
Kawasan Kaherah Besar Berbanding dengan Alat
Diagnostik Lain)
MIRIHAN A. METWALLY1, AYMEN S. YASSIN2*,
EMAD M. RIAD3, HAYAM M. HAMOUDA1 & MAGDY A. AMIN2
1Department of
Microbiology, National Organization of Drug Control and Research (NODCAR),
Giza, Egypt
2Department of
Microbiology and Immunology, Faculty of Pharmacy, Cairo University
Cairo, 11562, Egypt
3Department of
Bacteriology, Animal Health Research Institute, Giza, Egypt
Diserahkan:
24 Januari 2019/Diterima: 20 Disember 2019
ABSTRACT
Rapid detection is essential for
the elimination and control of tuberculosis (TB) worldwide. Our study aimed to show the
current and actual patterns of human and bovine TB distribution in the Greater
Cairo Area community by the application of different TB diagnostic tools to
individuals and farm animals with suspected TB. Both sputum and blood specimens
were collected from 150 suspected human cases in the community. Sputum samples
were examined using direct microscopy (Ziehl-Neelsen stain), culture on
Lowenstein-Jensen medium, and real-time PCR. Blood samples were used for
interferon gamma release assay (IGRA). In addition, lymph nodes and blood
samples were collected from 57 tuberculin-positive animals. Lymph nodes were
examined using direct microscopy (Ziehl-Neelsen stain), culture on
Lowenstein-Jensen medium, and real-time PCR. Animal blood samples were also
tested with IGRA. Sensitivity and specificity as well as positive and negative
predictive values were calculated for all tests. The results showed that for
both human and animal samples, IGRA provided the most accurate estimates of
current TB infection compared to other tests. Furthermore, IGRA had the highest
sensitivity and was the most convenient, proving its superiority compared to
traditional methods in showing true levels of TB dissemination. This
work shows that IGRA is a powerful tool for detection of TB in suspected humans
and farm animals and should be incorporated into routine TB screening programs,
which require more than one test.
Keywords: Egypt; interferon gamma release
assay; Mycobacterium species; TB Real-time PCR
ABSTRAK
Pengesanan pantas adalah penting untuk penghapusan dan pengawalan tuberkulosis
(TB) di seluruh dunia. Kajian kami bertujuan untuk menunjukkan corak terkini dan sebenar taburan TB manusia dan bovin di komuniti kawasan Kaherah Besar dengan penerapan alat diagnostik TB yang berbeza kepada
individu dan haiwan ternakan yang disyaki TB. Kedua-dua spesimen kahak dan darah dikumpulkan
daripada 150 kes manusia yang disyaki dalam kalangan masyarakat. Sampel kahak diperiksa menggunakan
mikroskopi langsung (stain Ziehl-Neelsen), kultur pada medium Lowenstein-Jensen dan
PCR masa nyata. Sampel darah digunakan untuk asai pelepasan gama interferon
(IGRA). Sebagai tambahan, nodus
limfa dan sampel darah dikumpulkan daripada 57 haiwan positif tuberkulin. Nodus
limfa diperiksa menggunakan mikroskopi langsung (stain Ziehl-Neelsen), dikultur pada medium
Lowenstein-Jensen dan PCR masa nyata. Sampel darah haiwan juga diuji dengan
IGRA. Kesensitifan dan kekhususan serta nilai ramalan positif dan negatif dihitung untuk semua ujian. Hasil kajian menunjukkan bahawa untuk sampel manusia dan haiwan,
IGRA memberikan anggaran yang paling tepat mengenai jangkitan TB semasa
berbanding dengan ujian lain. Selanjutnya, IGRA mempunyai kesensitifan tertinggi
dan paling mudah, membuktikan keunggulannya dibandingkan dengan kaedah tradisi
dalam menunjukkan tahap penyebaran TB yang sebenarnya. Kertas ini
menunjukkan bahawa IGRA adalah alat penting untuk mengesan TB pada
manusia dan haiwan ternakan yang disyaki dan harus dimasukkan ke dalam program pemeriksaan
rutin TB, yang memerlukan lebih
daripada satu ujian.
Kata kunci: Asai pelepasan gama interferon; Mesir; Mycobacterium species; PCR masa-nyata TB
RUJUKAN
Abu-Taleb, A.M.F., El-Sokkary, R.H. & El
Tarhouny, S.A. 2011. Interferon-gamma release assay for detection of latent
tuberculosis infection in casual and close contacts of tuberculosis cases. Eastern Mediterranean Health Journal 17(10): 749-753.
Ai, J.W., Ruan, Q.L., Liu, Q.H. & Zhang,
W.H. 2016. Review: Updates on the risk factors for latent tuberculosis
reactivation and their managements. Emerging
Microbes and Infections 3: 5. DOI: 10.1038/emi.2016.10.
American Thoracic Society. 2000. Targeted
tuberculin testing and treatment of latent tuberculosis infection. American Journal of Respiratory and Critical
Care Medicine 161: S221-S247.
Anderson, P., Munk, M.E., Pollock, J.M. &
Doherty, T.M. 2000. Specific immune-based diagnosis of tuberculosis. Lancet 356: 1099-1104.
Ani, A., Okpe, S., Akambi, M., Ejelionu, E.,
Yakubu, B., Owolodun, O., Ekeh, P., Oche, A., Tyen, D. & Idoko, J. 2009.
Comparison of a DNA based PCR method with conventional methods for the detection
of M. tuberculosis in Jos, Nigeria. The
Journal of Infection in Developing Countries 3: 470-475.
Ayele, W.Y., Neill, S.D., Zinsstag, J., Weiss,
M.G. & Pavlik, I. 2004. Bovine tuberculosis: An old disease but a new
threat to Africa. Int. J. Tuberc. Lung
Dis. 8: 924-937.
Ben Kahla, I., Boschiroli, M.L., Souissi, F.,
Cherif, N., Benzarti, M., Boukadida, J. & Hammami, S. 2011. Isolation and
molecular characterization of Mycobacterium
bovis from raw milk in Tunisia African. Health
Sciences 11(1): S2-S5.
Bianchi, G.M., Veneruso, G.M.D., Becciolini, L.,
Azzari, C., Chiappini, E., de Martino & Maurizio, M.D. 2009.
Interferon-gamma release assay improves the diagnosis of tuberculosis in
children. Pediatric Infectious Disease
Journal 28: 510-514.
Broekmans, J.F., Migliori, G.B., Rieder, H.L.,
Leesz, J., Ruutu, P., Loddenkemper, R. & Raviglione, M.C. 2002. European
framework for tuberculosis, control and elimination in countries with a low
incidence. European Respiratory Journal 19: 765-775.
Cosivi, O., Grange, J.M., Daborn, C.J.,
Raviglione, M.C., Fujikura, T., Cousins, D., Robinson, R.A., Huchzermeyer,
H.F., de Kantor, I. & Meslin, F.X. 1998. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerging
Infectious Disease 4: 59-70.
de kantor, I.N., Kim, S.J., Frieden, T., Laszlo,
A., Luelmo, F., Norval, P.Y., Rieder, H., Valenzuela, P. & Weyer, K. 1998. Laboratory Services in Tuberculosis Control:
Microscopy Part II. Italy: World Health Organization.
de Waard, J.H. & Robledo, J. 2007. Conventional diagnostic methods. In Tuberculosis.
From Basic Science to Patient Care, edited by Palomino, J.C., Leão, S.C.
& Ritacco, V. 1st edition. www.TuberculosisTextbook.com. pp. 401-424.
El-Sokkary,
R.H., Abu-Taleb, A.M., El-Seifi, O.S., Zidan, H.E., Mortada, E.M., El-Hossary,
D. & Farag, S.E. 2015. Assessing the prevalence of latent tuberculosis
among health care providers Zagazig City, Egypt using tuberculin skin test and
QuantiFERON-TB gold in-tube test. Cent.
Eur. J. Public Health 4: 324-330.
Gordon, S.V. & Marcel, A.B. 2015. Comparative Mycobacteriology of the
Mycobacterium Tuberculosis Complex. Wallingford, UK: Publisher CAB
International.
Gormley, E., Doyle, M.B., McGill, K., Costello,
E., Good, M. & Collins, J.D. 2004. The effect of the tuberculin test and
the consequences of a delay in blood culture on the sensitivity of a
gamma-interferon assay for the detection of Mycobacterium
bovis infection in cattle. Vet.
Immunol. Immunopathol. 102: 413-420.
Hassan, A., Fattouh, M., Atteya, I.,
Mohammadeen, H. & Ahmed, H. 2014. Validation of a rapid tuberculosis PCR
assay for detection of MDR-TB patients in Sohag University Hospital. Journal of Applied & Environmental
Microbiology 2: 65-69.
Hiban, N.A.A. & Hasan, H.A. 2015. Prevalence
of latent tuberculosis infection among multinational health care workers in
Muhayil Saudi Arabia. The Egyptian
Journal of Bronchology 9: 183-187.
Issar, S. 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbial Rev. 16(3): 463-496.
Jiang, X.Y., Wang, C.F., Wang, C.F., Zhang, P.J. & He, Z.Y. 2006. Cloning and expression of Mycobacterium bovis secreted protein
MPB83 in Escherichia coli. J. Biochem. & Molecul. Biol. 39:
22-25.
Lalvani, A. 2007. Diagnosing tuberculosis
infections in the 21st century. New tools to tackle an old enemy. Chest 131: 1898-1906.
Marks, J. 1972. Ending the routine Guinea pigs
test. Tubercle. 53: 31-34.
Mazurek, G.H., Jereb, J., Vernon, A., LoBue, P.,
Goldberg, S. & Kenneth Castro. 2010. Updated guidelines for using
interferon gamma release assays to detect Mycobacterium tuberculosis infection - United States. MMWR Recomm. Rep. 59(5): 1-25.
Müller, B., Dürr, S., Alonso, S., Hattendorf,
J., Laisse, C.J.M., Parsons, S.D.C., van Helden, P.D. & Zinsstag, J. 2013.
Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerging Infectious Diseases 19:
899-908.
Müller, B. 2009. Mycobacterium bovis at the animal-human interface: A problem, or
not. Veterinary Microbiology 140:
371-381.
Patama Monkongdee, McCarthy, K.D., Cain, K.P.,
Theerawit Tasaneeyapan, Nguyen H. Dung, Nguyen T.N. Lan, Nguyen T.B. Yen, Nipat Teeratakulpisarn, Nibondh Udomsantisuk, Heilig, C. & Varma, J.K. 2009. Yield of
acid-fast smear and mycobacterial culture for tuberculosis diagnosis in people
with human immunodeficiency virus. Am. J.
Respir. Crit. Care Med. 180(9): 903-908.
Petroff, S.A. 1915. A new and rapid method for
isolation and cultivation of tubercle bacilli directly for the sputum and
feaces. J. Exp. Med. 21: 38-42.
Ratledge, C. & Stanford, J. 1982. The Biology of the Mycobacteria. London: Academic Press. p. 544.
Ravn, P., Munk, M.E., Andersen, A.B., Lundgren,
B., Lundgren, J.D., Nielsen, L.N., Kok-Jensen, A., Andersen, P. & Weldingh,
K. 2005. Prospective evaluation of a whole-blood test using Mycobacterium
tuberculosis-specific antigens ESAT-6 and CFP-10 for diagnosis of active
tuberculosis. Clin. Diagn. Lab. Immunol. 12: 491-496.
Taylor, G.M., Murphy, E., Hopkins, R., Rutland, P. & Chistov, Y. 2007. First report of Mycobacterium bovis DNA in human remains from the iron age. Microbiol. 153: 1243-1249.
Taylor, M.J., Hughes, M.S., Skuce, R.A. &
Neill, S.D. 2001. Detection of Mycobacterium
bovis in bovine clinical specimens using real-time fluorescence and
fluorescence resonance energy transfer probe rapid-cycle PCR. Journal of Clinical Microbiology 39:
1272-1278.
Thoen, C.O., Steele, J.H. & Gilsdorf, M.J.
2006. Mycobacterium bovis infection
in animal and human. Can. Vet. J. 49(7): 688.
Tortoli, E. & Palomino, J.C. 2007. New
diagnostic methods. In Tuberculosis. From
Basic Science to Patient Care, edited by Palomino, J.C., Leão, S.C. &
Ritacco, V. 1st edition. www.TuberculosisTextbook.com. pp. 441-486.
Van, S., Hermans, P., Haas, P., Roll, D. &
Van, D. 1991. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: Evaluation of an insertion
sequence-dependent DNA polymorphism as a tool in the epidemiology of
tuberculosis. J. of Clinical Microbiology 29(11): 2578-2586.
Ward, L.J., Brown, J.C. & Davey, G.P. 1995.
Detection of dairy Leuconostoc strains using the polymerase chain reaction. Letters in Applied Microbiology 20:
204-208.
World Health Organization. 2015. Global Tuberculosis Report. Geneva: WHO. Available at
http://www.who.int/tb/publications/global_report/en/. Accessed on 23 November 2015.
*Pengarang untuk
surat-menyurat; email: aymen.yassin@pharma.cu.edu.eg
|