Sains Malaysiana
49(4)(2020): 809-816
http://dx.doi.org/10.17576/jsm-2020-4904-10
3D Titanium Scaffold
Properties and Osteogenesis of Stem Cells
(Sifat Perancah Titanium 3D dan Osteogenesis Sel Stem)
ROHAYA MEGAT ABDUL
WAHAB1*, MANAL
NABIL HAGAR1, NUR ATMALIYA LUCHMAN1, FARINAWATI YAZID1 & SHAHRUL HISHAM ZAINAL ARIFFIN2
1Centre for Family Oral Health, Universiti
Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Federal
Territory, Malaysia
2Centre for Biotechnology and Functional
Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 8 Februari 2019/Diterima: 6
Disember 2019
ABSTRACT
Studies
on porous titanium for use in dental applications have been growing due to
their excellent properties such as low elastic modulus, biocompatibility and
excellent strength. The porosity and pore size of titanium scaffold play an
important role in bone formation. Thus, this paper reviews the properties of
titanium scaffold and the relationship between the porosity and pore size of
titanium with the osteogenesis of stem cells in respect of its mechanical
properties and biological assessment. From this review, it was found that a pore size of less than 300 µm
allows for good vascularization that can lead to direct osteogenesis without an
interphase of cartilage formation. The minimum requirement for pore size is
approximately 100 µm to assist in the migration requirement, cell size and
transport, as a smaller pore size causes a hypoxic condition and induces
osteochondral formation before osteogenesis, while a pore size from 500 to 1000
µm affects the differentiation of the stem cells. In addition, it was found
that high porosity induces osteogenesis. The average porosity of the scaffold
for cell proliferation was between 25-50 µm. In conclusion, highly porous titanium is a
useful modern material for creating 3D structures for bone regeneration and
implant fixation.
Keywords: Bone regeneration; pore size; porosity; stem cell; titanium scaffold
ABSTRAK
Kajian
mengenai titanium berliang telah berkembang pesat dalam aplikasi pergigian
disebabkan oleh ciri-ciri istimewanya seperti modulus kenyal, bioserasi dan kekuatan bahan. Keliangan dan saiz
liang perancah titanium memainkan peranan yang penting dalam proses pembentukan
tulang. Ciri-ciri perancah titanium dan hubungan antara keliangan dan saiz
liang titanium dengan osteogenesis sel stem serta perkaitannya dengan sifat
mekanik dan penilaian biologi diulas dalam artikel ini. Daripada ulasan ini, didapati bahawa saiz
liang yang kurang daripada 300 μm membenarkan vaskularisasi yang baik yang
boleh menyebabkan osteogenesis secara langsung tanpa interfasa daripada pembentukan rawan. Saiz liang
minimum yang diperlukan adalah lebih kurang 100 μm dan ia sesuai bagi saiz sel dan
pengangkutan serta membantu
dalam migrasi sel kerana saiz liang yang lebih kecil boleh menyebabkan keadaan
hipoksia dan merangsang pembentukan osteokondral sebelum osteogenesis. Saiz
liang antara 500 hingga 1000 μm pula memberi kesan kepada pembezaan sel
stem. Selain daripada itu,
didapati bahawa peningkatan keliangan juga dapat merangsang osteogenesis.
Purata keliangan bagi perancah untuk membantu proliferasi sel adalah antara
25-50 μm. Kesimpulannya, titanium yang mempunyai keliangan yang tinggi
sesuai menjadi bahan moden untuk pembentukan struktur 3D bagi penjanaan semula
tulang dan penetapan implan.
Kata
kunci: Keliangan; penjanaan semula tulang; perancah titanium; saiz liang; sel stem
RUJUKAN
Alaribe, F.N., Manoto, S.L. & Motaung, S.C. 2016. Scaffolds from
biomaterials: Advantages and limitations in bone and tissue engineering. Biologia 71(4): 353-366.
Amemiya, T., Nakaoka, K.,
Hamada, Y. & Hayakawa, T. 2012. Effect of porosity of titanium web on
cortical bone response. Journal of Hard
Tissue Biology 21(2): 103-108.
Arifin, A., Sulong, A.B., Fun,
L.C. & Yani, I. 2017. Porous titanium alloy/hydroxyapatite composite using
powder compaction route. Journal of
Mechanical Engineering and Sciences 11(2): 2679-2692.
Asadi-Eydivand, M.,
Solati-Hashjin, M. & Abu Osman, N.A. 2018. Mechanical behavior of calcium
sulfate scaffold prototypes built by solid free-form fabrication. Rapid Prototyping Journal 24(8):
1392-1400.
Aslam, M., Ahmad, F., Yusoff,
P.B., Muhamad, N., Raza, M.R. & Shirazi, M.I. 2014. Effects of admixed
titanium on densification of 316 L stainless steel powder during sintering.
Volume 13. 4th International Conference
on Production, Energy and Reliability, ICPER 2014 - Kuala Lumpur, Malaysia.
Barbas, A., Bonnet, A.S.,
Lipinski, P., Pesci, R. & Dubois, G. 2012. Development and mechanical
characterization of porous titanium bone substitutes. Journal of the Mechanical Behavior of Biomedical Materials 9:
34-44.
Chen, X.B., Li, Y.C., Hodgson,
P.D. & Wen, C. 2009. The importance of particle size in porous titanium and
nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia 5(6): 2290-2302.
Chocholata, P., Kulda, V. &
Babuska, V. 2019. Fabrication of scaffolds for bone-tissue regeneration. Materials 12(4): 568.
Dabrowski, B., Swieszkowski,
W., Godlinski, D. & Kurzydlowski, K.J. 2010. Highly porous titanium
scaffolds for orthopaedic applications. Journal
of Biomedical Materials Research Part B: Applied Biomaterials 95(1): 53-61.
Fernando, S., McEnery, M. &
Guelcher, S. 2016. Polyurethanes for bone tissue engineering. Advances in Polyurethane Biomaterials 16:
481-501.
Fujibayashi, S., Neo, M., Kim,
H.M., Kokubo, T. & Nakamura, T. 2004. Osteoinduction of porous bioactive
titanium metal. Biomaterials 25(3):
443-450.
Götz, H., Müller, M., Emmel,
A., Holzwarth, U., Erben, R. & Stangl, R. 2004. Effect of surface finish on
the osseointegration of laser-treated titanium alloy implants. Biomaterials 25(18): 4057-4064.
Guyer, R.D., Abitbol, J.J.,
Ohnmeiss, D.D. & Yao, C. 2016. Evaluating osseointegration into a deeply
porous titanium scaffold: A biomechanical comparison with PEEK and allograft. Spine 41(19): 1146-1150.
Hayakawa, T., Takahashi, K.,
Okada, H., Yoshinari, M., Hara, H., Mochizuki, C., Yamamoto, H. & Sato, M.
2008. Effect of thin carbonate-containing apatite (CA) coating of titanium
fiber mesh on trabecular bone response. Journal
of Materials Science: Materials in Medicine 19(5): 2087-2096.
Hibi, H., Yamada, Y., Ueda, M.
& Endo, Y. 2006. Alveolar cleft osteoplasty using tissue-engineered
osteogenic material. International
Journal of Oral and Maxillofacial Surgery 35(6): 551-555.
Hoppe, A. & Boccaccini, A.
2014. Bioactive glass foams for tissue engineering applications. Biomedical Foams for Tissue Engineering
Applications 7: 191-212.
Jemat, A., Ghazali, M.J.,
Razali, M. & Otsuka, Y. 2018. Microstructural, surface roughness and
wettability of titanium alloy coated by YZP-30wt.% tiO2 for dental application. Jurnal Teknologi 80(2): 45-50.
Karageorgiou, V. & Kaplan,
D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27): 5474-5491.
Kujala, S., Ryhänen, J.,
Danilov, A. & Tuukkanen, J. 2003. Effect of porosity on the
osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute. Biomaterials 24(25): 4691-4697.
Li, R.H. & Wozney, J.M.
2001. Delivering on the promise of bone morphogenetic proteins. Trends in Biotechnology 19(7): 255-265.
Liu, L.S., Thompson, A.Y.,
Heidaran, M.A., Poser, J.W. & Spiro, R.C. 1999. An osteoconductive
collagen/hyaluronate matrix for bone regeneration. Biomaterials 20(12): 1097-1108.
Loh, Q.L. & Choong, C.
2013. Three-dimensional scaffolds for tissue engineering applications: Role of
porosity and pore size. Tissue
Engineering Part B: Reviews 19(6): 485-502.
Luthringer, B., Ali, F.,
Akaichi, H., Feyerabend, F., Ebel, T. & Willumeit, R. 2013. Production,
characterisation, and cytocompatibility of porous titanium-based particulate
scaffolds. Journal of Materials Science:
Materials in Medicine 24(10): 2337-2358.
Mediaswanti, K., Wen, C.,
Ivanova, E., Berndt, C., Malherbe, F., Pham, V. & Wang, J. 2013. A review
on bioactive porous metallic biomaterials. J.
Biomim. Biomater. Tissue Eng. 18: 104. doi:10.4172/1662-100X.1000104.
Meng, W., Zhou, Y., Zhang, Y.,
Cai, Q., Yang, L. & Wang, B. 2013. Effects of hierarchical
micro/nano-textured titanium surface features on osteoblast-specific gene
expression. Implant Dentistry 22(6):
656-661.
O'brien, F.J. 2011.
Biomaterials & scaffolds for tissue engineering. Materials Today 14(3): 88-95.
Otsuki, B., Takemoto, M.,
Fujibayashi, S., Neo, M., Kokubo, T. & Nakamura, T. 2006. Pore throat size
and connectivity determine bone and tissue ingrowth into porous implants:
Three-dimensional micro-CT based structural analyses of porous bioactive
titanium implants. Biomaterials 27(35): 5892-5900.
Pattanayak, D.K., Fukuda, A.,
Matsushita, T., Takemoto, M., Fujibayashi, S., Sasaki, K., Nishida, N., Nakamura,
T. & Kokubo, T. 2011. Bioactive Ti metal analogous to human cancellous
bone: Fabrication by selective laser melting and
chemical treatments. Acta Biomaterialia 7(3): 1398-1406.
Rakhmatia, Y.D., Ayukawa, Y.,
Furuhashi, A. & Koyano, K. 2013. Current barrier membranes: Titanium mesh
and other membranes for guided bone regeneration in dental applications. Journal of Prosthodontic Research 57(1):
3-14.
Raza, M.R., Sulong, A.B.,
Muhamad, N., Akhtar, M.N. & Rajabi, J. 2015. Effects of binder system and processing
parameters on formability of porous Ti/HA composite through powder injection
molding. Materials & Design 87:
386-392.
Simon, J.L., Roy, T.D.,
Parsons, J.R., Rekow, E.D., Thompson, V.P., Kemnitzer, J. & Ricci, J.L.
2003. Engineered cellular response to scaffold architecture in a rabbit
trephine defect. Journal of Biomedical
Materials Research 66(2): 275-282.
Stangl, R., Rinne, B., Kastl,
S. & Hendrich, C. 2001. The influence of pore geometry in cp Ti-implants-A
cell culture investigation. Eur. Cell
Mater. 2(2): 1-9.
Sul, Y.T., Johansson, C.B.,
Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A. & Albrektsson, T. 2002.
Characteristics of the surface oxides on turned and electrochemically oxidized
pure titanium implants up to dielectric breakdown: The oxide thickness,
micropore configurations, surface roughness, crystal structure and chemical
composition. Biomaterials 23(2):
491-501.
Tamaddon, M., Samizadeh, S.,
Wang, L., Blunn, G. & Liu, C. 2017. Intrinsic osteoinductivity of porous
titanium scaffold for bone tissue engineering. International Journal of Biomaterials 2017: 5093063.
Thavornyutikarn, B.,
Chantarapanich, N., Sitthiseripratip, K., Thouas, G.A. & Chen, Q. 2014.
Bone tissue engineering scaffolding: Computer-aided scaffolding techniques. Progress in Biomaterials 3(2-4): 61-102.
Torres-Sanchez, C., Al Mushref,
F., Norrito, M., Yendall, K., Liu, Y. & Conway, P.P. 2017. The effect of
pore size and porosity on mechanical properties and biological response of
porous titanium scaffolds. Materials Science
and Engineering: C 77: 219-228.
Van Bael, S., Chai, Y.C.,
Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., Kruth, J.P. &
Schrooten, J. 2012. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells
seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta biomaterialia 8(7): 2824-2834.
van den Dolder, J. &
Jansen, J.A. 2007. Titanium fiber mesh: A nondegradable scaffold material. Engineering of Functional Skeletal Tissues 3: 69-80.
Van der Stok, J., Van der Jagt,
O.P., Amin Yavari, S., De Haas, M.F., Waarsing, J.H., Jahr, H., Van Lieshout,
E.M., Patka, P., Verhaar, J.A. & Zadpoor, A.A. 2013. Selective laser
melting-produced porous titanium scaffolds regenerate bone in critical size
cortical bone defects. Journal of
Orthopaedic Research 31(5): 792-799.
Vehof, J.W., de Ruijter, A.E.,
Spauwen, P.H. & Jansen, J.A. 2001. Influence of rhBMP-2 on rat bone marrow
stromal cells cultured on titanium fiber mesh. Tissue Engineering 7(4): 373-383.
Wysocki, B., Idaszek, J.,
Szlązak, K., Strzelczyk, K., Brynk, T., Kurzydłowski, K.J. &
Święszkowski, W. 2016. Post processing and biological evaluation of
the titanium scaffolds for bone tissue engineering. Materials 9(3): E197. doi: 10.3390/ma9030197.
Yazid, M.D., Zainal Ariffin,
S.H., Senafi, S., Zainal Ariffin, Z. & Megat Abdul Wahab, R. 2011. Stem
cell heterogeneity of mononucleated cells from murine peripheral blood:
Molecular analysis. The Scientific World
Journal 11: 2150-2159.
*Pengarang
untuk surat-menyurat; email: rohaya_megat@ukm.edu.my
|