Sains Malaysiana 49(4)(2020): 963-970
http://dx.doi.org/10.17576/jsm-2020-4904-25
Pendekatan
Baharu untuk Mengelompok Stesen Pengawasan Kualiti
Udara menggunakan Homologi Gigih
(A
New Approach to Cluster Air Quality Monitoring Stations using Persistent
Homology)
NUR
FARIHA SYAQINA ZULKEPLI*, MOHD SALMI MD NOORANI, FATIMAH ABDUL RAZAK, MUNIRA ISMAIL & MOHD ALMIE ALIAS
Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
28 Ogos 2019/Diterima: 14 Disember 2019
ABSTRAK
Isu pencemaran udara merupakan masalah global yang terus
dibincangkan sehingga kini. Seringkali penggunaan pendekatan kuantitatif
seperti analisis kelompok, analisis korelasi dan analisis komponen prinsipal
digunakan untuk menganalisis keserupaan pencemaran udara antara stesen. Walau
bagaimanapun, kajian berkaitan dengan pendekatan kualitatif khususnya pendekatan
topologi untuk menganalisis keserupaan pencemaran udara tidak lagi dipelopori
dengan meluas di Malaysia. Oleh itu, penyelidikan ini adalah kajian rintis yang
dijalankan untuk mengkaji keserupaan pencemaran udara antara beberapa stesen di
Malaysia menggunakan teknik dalam analisis data bertopologi yang dikenali
sebagai homologi gigih. Sifat topologi pencemaran udara diperihalkan oleh
ciri-ciri topologi seperti komponen berkait, lubang dan lompong. Habuk halus (PM10) yang diketahui sebagai pencemar utama digunakan untuk memperihalkan
perilaku pencemaran udara di stesen pengawasan kualiti udara Klang, Petaling
Jaya dan Shah Alam. Ciri-ciri topologi yang diperoleh daripada PM10 dianalisis
menggunakan ukuran jarak (jarak Wasserstein) untuk mendapatkan keserupaan
topologi. Darjah keserupaan dicirikan oleh nilai jarak yang kecil dan
sebaliknya. Hasil daripada ukuran jarak menunjukkan Petaling Jaya dan Shah Alam
adalah stesen yang paling serupa dan Klang adalah stesen yang paling tak
serupa. Penentusahan untuk hasil tersebut dijalankan melalui analisis kelompok
agglomeratif berhierarki yang mengelompokkan stesen mengikut jarak
ketakserupaan dan hasilnya adalah konsisten dengan keputusan kajian ini. Melalui
penemuan ini, kajian yang lebih mendalam dengan menggunakan jentera lain dalam
bidang analisis data bertopologi boleh dilakukan sebagai kaedah alternatif
dalam menganalisis masalah pencemaran udara di Malaysia.
Kata kunci: Analisis data bertopologi; homologi gigih;
jarak Wasserstein; keserupaan topologi; PM10
ABSTRACT
The
issue of air pollution is a global problem that continues to be
discussed today. Often, the use of quantitative approaches such as
cluster analysis, correlation analysis and principal component analysis is used to analyze the similarity of air pollution between
stations. However, studies related to qualitative approaches, especially
topological approaches to analyzing the similarity of air pollution, have not
been widely popularized in Malaysia. Therefore, this study is a pilot study
conducted to investigate the similarity of air pollution between several
stations in Malaysia using a technique in the topological data analysis known
as persistent homology. The topological properties of air pollution are described by topological features such as connected
components, holes, and
void. The particulate matter (PM10) known
as the main pollutant is used to describe the air
pollution behavior at Klang, Petaling Jaya and Shah Alam air quality monitoring
stations. The topological features obtained from the PM10 is
analyzed using distance measure (Wasserstein distance) to obtain topological
similarity. The degree of similarity is characterized by a small distance value and vice versa. Results of distance measure show that
Petaling Jaya and Shah Alam are the most similar stations and Klang is the most
dissimilar station. The validation of these results was
carried out by analysis of hierarchical agglomerative cluster analysis
that grouped the stations according to their dissimilarity distance and the
results are consistent with the findings of this study. From this finding, a
more in-depth study using other machinery in the field of topological data
analysis can be done as an alternative method for
analyzing air pollution problems in Malaysia.
Keywords: Persistent homology; PM10; topological data analysis; topological similarity; Wasserstein
distance
RUJUKAN
Abdullah, A.M., Samah, M.A. &
Jun, T.Y. 2012. An overview of the air pollution trend in Klang Valley,
Malaysia. Open Environmental Sciences 6(1): 13-19.
Adenan, N.H. & Noorani, M.S.M.
2016. Multiple time-scales nonlinear prediction of river flow using chaos
approach. Jurnal Teknologi 78: 1-7.
Afroz, R., Hassan, M.N. &
Ibrahim, N.A. 2003. Review of air pollution and health impacts in
Malaysia. Environmental Research 92(2): 71-77.
Austin, E., Coull, B.A., Zanobetti,
A. & Koutrakis, P. 2013. A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition. Environment International 59: 244-254.
Azid, A., Juahir, H., Ezani, E.,
Toriman, M.E., Endut, A., Rahman, M.N.A., Yunus, K., Kamarudin, M.K.A., Hasnam,
C.N.C., Saudi, A.S. & Umar, M.R. 2015. Identification source of variation
on regional impact of air quality pattern using chemometric. Aerosol and Air
Quality Research 15: 1545-1558.
Azmi, S.Z., Latif, M.T., Ismail,
A.S., Juneng, L. & Jemain, A.A. 2010. Trend and status of air quality at
three different monitoring stations in the Klang Valley, Malaysia. Air
Quality, Atmosphere & Health 3(1): 53-64.
Cohen, A.J., Brauer, M., Burnett,
R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B.,
Dandona, L., Dandona, R. & Feigin, V. 2017. Estimates and 25-year trends of
the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden
of Diseases Study 2015. The Lancet 389(10082): 1907-1918.
Edelsbrunner, H. & Harer, J.
2010. Computational Topology: An Introduction. Applied Math
Textbook.
Everitt,
B.S., Landau, S., Leese, M. & Stahl, D. 2011. Cluster Analysis. 5th ed. Chichester, UK:
John Wiley & Sons.
Fasy, B.T., Kim, J., Lecci, F.,
Maria, C. & Rouvreau, V. 2017. Statistical tools for topological data
analysis. https://cran.r project.org/web/packages/TDA/TDA.pdf. Diakses pada 2 Februari 2018.
Ghrist, R. 2008. Barcodes: The
persistent topology of data. Bulletin of the American Mathematical
Society 45(1): 61-75.
Gidea, M. & Katz, Y.
2018. Topological data analysis of financial time series: Landscapes of
crashes. Physica A: Statistical Mechanics and its Applications 491: 820-834.
Hajij, M., Wang, B., Scheidegger,
C. & Rosen, P. 2018. Visual detection of structural changes in time-varying
graphs using persistent homology. 2018 IEEE Pacific Visualization Symposium
(PacificVis). hlm. 125-134.
Hamid, N.Z.A. & Noorani, M.S.M.
2017. Aplikasi model baharu penambahbaikan pendekatan kalut ke atas peramalan
siri masa kepekatan ozon. Sains Malaysiana 46(8): 1333-1339.
Hatcher, A. 2002. Algebraic
Topology. Cambridge: Cambridge University
Press.
Hua, A.K. 2018.
Applied chemometric approach in identification sources of air quality pattern
in Selangor, Malaysia. Sains Malaysiana 47(3): 471-479.
Iizuka, A., Shirato, S., Mizukoshi,
A., Noguchi, M., Yamasaki, A. & Yanagisawa, Y. 2014. A cluster analysis of
constant ambient air monitoring data from the Kanto Region of Japan. International
Journal of Environmental Research and Public Health 11(7): 6844-6855.
Isiyaka, H.A. & Azid, A. 2015.
Air quality pattern assessment in Malaysia using multivariate techniques. Malaysian
Journal of Analytical Sciences 19(5):
966-978.
Jamalani, M.A., Abdullah, A.M.,
Azid, A., Ramli, M.F., Baharudin, M.R., Bose, M. MElhadi, R.E., Youssef,
K.A.A.B., Gnadimzadeh, A. & Gumel, D.Y. 2016. Monthly analysis of PM10 in ambient air of Klang Valley, Malaysia. Malaysian Journal of
Analytical Sciences 20(5):
1159-1170.
JASM.
2019a. Laporan Kualiti Alam Sekeliling 2015. https://enviro.doe.gov.my/. Diakses pada 24 Februari 2019.
JASM.
2019b. Laporan Kualiti Alam Sekeliling 2013. https://enviro.doe.gov.my/. Diakses pada 24 Februari 2019.
Kerber, M., Morozov, D. &
Nigmetov, A. 2017. Geometry helps to compare persistence diagrams. Journal
of Experimental Algorithmics 22:
1-4.
Khasawneh,
F.A. & Munch, E. 2014. Stability determination in turning using persistent
homology and time series analysis. Prosiding ASME 2014 International Mechanical Engineering Congress and
Exposition, November 14-20, Montreal, Canada.
Khasawneh,
F.A., Munch, E. & Perea, J.A. 2018. Chatter classification in turning using
machine learning and topological data analysis. IFAC-PapersOnLine 51(14): 195-200.
Kramár, M., Levanger, R., Tithof,
J., Suri, B., Xu, M., Paul, M., Schatz, M.F. & Mischaikow, K. 2016.
Analysis of Kolmogorov flow and Rayleigh-Bénard
convection using persistent homology. Physica D: Nonlinear Phenomena 334: 82-98.
Ling, O.H.L., Siti Nur, A.M. &
Noralizawati, M. 2014. Air quality and land use in urban region of Petaling
Jaya, Shah Alam and Klang, Malaysia. Environment
Asia 7(1): 134-144.
Lu, W.Z., He, H.D. & Dong, L.Y.
2011. Performance assessment of air quality monitoring networks using principal
component analysis and cluster analysis. Building and Environment 46(3): 577-583.
Maletić,
S., Zhao, Y. & Rajković, M. 2016. Persistent topological features of
dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear
Science 26(5): 053105.
Nicolau,
M., Levine, A.J. & Carlsson, G. 2011. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and
excellent survival. Proceedings of the National Academy of Sciences 108(17): 7265-7270.
Otter, N., Porter, M.A., Tillmann,
U., Grindrod, P. & Harrington, H.A. 2017. A roadmap for the computation of
persistent homology. EPJ Data Science 6(1): 17.
Pereira, C.M. & Mello, R.F.D.
2015. Persistent homology for time series and spatial data clustering. Expert Systems with Applications 42(15-16):
6026-6038.
Petri,
G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P.J.
& Vaccarino, F. 2014. Homological scaffolds of brain functional
networks. Journal of the Royal Society Interface 11(101): 20140873.
Rahman, S.R.A., Ismail, S.N.S.,
Raml, M.F., Latif, M.T., Abidin, E.Z. & Praveena, S.M. 2015. The assessment
of ambient air pollution trend in Klang Valley, Malaysia. World
Environment 5(1): 1-11.
Seversky, L.M., Davis, S. &
Berger, M. 2016. On time-series topological data analysis: New data and
opportunities. Prosiding IEEE
Conference on Computer Vision and Pattern Recognition Workshops. hlm. 59-67.
Spangl, W., Schneider, J.,
Moosmann, L. & Nagl, C. 2007. Representativeness and classification of air
quality monitoring stations. Final
Report: Umweltbundesamt.
Takens, F. 1981. Detecting strange
attractors in turbulence. Lecture Notes
in Mathematics Dynamical Systems and Turbulence, Warwick 1980: 366-381.
Umeda,
Y. 2017. Time series classification via topological data analysis. Information
and Media Technologies 12:
228-239.
Zainordin,
N.S., Ramli, N.A. & Elbayoumi, M. 2017. Distribution and temporal behaviour
of O3 and NO2 near selected schools in Seberang Perai,
Pulau Pinang and Parit Buntar, Perak, Malaysia. Sains Malaysiana 46(2): 197-207.
Zulkepli, N.F.S., Noorani, M.S.M., Razak, F.A., Ismail, M. & Alias, M.A.
2019a. Topological
characterization of haze episodes using persistent homology. Aerosol and Air Quality Research 19: 1614-1624.
Zulkepli,
N.F.S., Noorani, M.S.M., Razak, F.A., Ismail, M. & Alias,
M.A. 2019b. Haze detection using persistent homology. AIP Conference Proceedings 2111: 020012.
*Pengarang untuk surat-menyurat;
email: farihasyaqina@yahoo.com
|