Sains Malaysiana 49(6)(2020): 1237-1244
http://dx.doi.org/10.17576/jsm-2020-4906-03
Effect of Lactobacillus
casei and Lactobacillus acidophilus in Laying Hens Challenged by Escherichia coli Infection
(Kesan Lactobacillus
casei dan Lactobacillus acidophilus dalam Ayam Bertelur yang
Dijangkiti Escherichia coli)
WIDYA
PARAMITA LOKAPIRNASARI1*, ADRIANA MONICA SAHIDU2, LILIK
MASLACHAH3, EMY KOESTANTI SABDONINGRUM1 & ANDREAS
BERNY YULIANTO4
1Department of Animal Husbandry, Faculty of
Veterinary Medicine, Universitas Airlangga, Jl. Mulyorejo, Kampus C, Surabaya,
60115, Indonesia
2Department of Marine, Faculty of Fisheries
and Marine, Universitas Airlangga, Jl. Mulyorejo, Kampus C, Surabaya, 60115, Indonesia
3Department
of Basic Medicine, Veterinary Pharmacy Laboratory, Faculty of Veterinary
Medicine, Universitas
Airlangga, Jl. Mulyorejo, Kampus C,
Surabaya, 60115, Indonesia
4Sains Veteriner, Faculty of Veterinary
Medicine, Universitas Airlangga, Jl. Mulyorejo, Kampus C, Surabaya, 60115, Indonesia
Diserahkan:
6 April 2019/Diterima: 14 Februari 2020
ABSTRACT
This study aimed
to prove the potential of Lactobacillus casei and Lactobacillus acidophilus probiotics as alternative substitutes of
antibiotic growth promoters in laying hens challenged by Escherichia coli infection in order to enhance their growth performance and hen day production.
The study used a total of 120 laying hens aged 25 weeks, divided into 3×2
treatments with each comprising 4 replications, and each replication consisted of 5
hens. The study used a completely randomised factorial design; factor a was the
feed additive (control, antibiotics growth
promoters /AGP, probiotic), whereas factor b was the E. coli infection (non-infection and E. coli infection). The results showed
that there were significant differences (p<0.05) between the treatment of
feed additive (factor a), and E. coli infection (factor b), and
interaction (p<0.05) between the feed and the infection for the egg weight,
hen day production, feed conversion ratio and feed efficiency. The probiotic
use of 0.5% L. casei + 0.5% L. acidophilus in hens either
infected or uninfected with E. coli still produced the highest egg
weight, hen day production, feed efficiency and reduced feed conversion ratio
compared to all treatments. Based on the results, it can be concluded that the
use of probiotics 0.5% L. casei and 0.5% L. acidophilus act as
alternative substitutes for antibiotic growth promoters in laying hens
challenged by E. coli infection.
Keywords: E.
coli; growth performance; hen day production; Lactobacillus acidophilus; Lactobacillus casei
ABSTRAK
Kajian ini bertujuan membuktikan potensi probiotik Lactobacillus
casei dan Lactobacillus acidophilus sebagai pengganti
alternatif penggalak pertumbuhan antibiotik (AGP) dalam ayam bertelur yang dijangkiti Escherichia coli terhadap prestasi pertumbuhan dan pengeluaran telur harian. Kajian ini menggunakan 120 ekor ayam bertelur
berumur 25 minggu yang dibahagikan kepada rawatan 3×2, dengan setiap rawatan terdiri daripada 4 replikasi dan setiap replikasi terdiri
daripada 5 ekor ayam bertelur. Kajian ini menggunakan reka bentuk faktoran
rawak lengkap; faktor a adalah makanan tambahan (kawalan, AGP, probiotik),
manakala faktor b adalah faktor jangkitan E. coli (bukan jangkitan dan jangkitan E. coli). Hasil kajian
menunjukkan terdapat perbezaan yang signifikan (p<0.05) antara rawatan
aditif makanan (faktor a) dan rawatan jangkitan E. coli (faktor b), serta interaksi antara faktor makanan tambahan dan jangkitan pada berat telur, pengeluaran telur harian, nisbah penukaran makanan dan
kecekapan suapan. Penggunaan
probiotik 0.5% L. casei + 0.5% L. acidophilus dalam ayam sama ada dijangkiti atau
tidak dijangkiti E. coli masih memberikan berat telur tertinggi, pengeluaran telur harian dan kecekapan
suapan yang tertinggi dan menurunkan nisbah penukaran makanan berbanding semua
rawatan. Berdasarkan hasil kajian, dapat disimpulkan bahawa penggunaan probiotik 0.5% L. casei + 0.5% L. acidophilus dapat digunakan sebagai pengganti alternatif bagi promoter pertumbuhan antibiotik dalam ayam petelur yang dijangkiti E. coli.
Kata
kunci: E. coli; Lactobacillus
acidophilus; Lactobacillus casei; pengeluaran telur harian; prestasi pertumbuhan
RUJUKAN
Anadón, A. 2006. WS14 The EU ban of antibiotics as feed
additives alternatives and consumer safety. Veterinary Pharmacology and
Therapeutics 29: 41-44.
Awad, W., Ghareeb, K. & Böhm, J. 2008. Intestinal
structure and function of broiler chickens on diets supplemented with a
synbiotic containing Enterococcus faecium and oligosaccharides. International Journal of Molecular Sciences 9(11): 2205-2216.
Awad, W.A., Ghareeb, K.,
Abdel-Raheem, S. & Böhm, J. 2009. Effects of dietary inclusion of probiotic
and synbiotic on growth performance, organ weights, and intestinal
histomorphology of broiler chickens. Poultry Science 88(1): 49-56.
Banerjee, S., Sar, A.,
Misra, A., Pal, S., Chakraborty, A. & Dam, B. 2018. Increased productivity
in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective
enrichment of gut microbiota, particularly short chain fatty acid
producers. Microbiology 164(2):
142-153.
Bergstrom, K.S., Sham, H.P.,
Zarepour, M. & Vallance, B.A. 2012. Innate host responses to enteric
bacterial pathogens: A balancing act between resistance and tolerance. Cellular
Microbiology 14(4): 475-484.
Bernardeau, M., Vernoux, J.P., Dubernet, S.H. &
Guéguen M. 2008. Safety assessment of dairy microorganisms: The Lactobacillus genus. International Journal of Food Microbiology 126:
278-285.
Bidarkar, V.K., Swain, P.S., Ray, S.
& Dominic, G. 2014. Probiotics: Potential alternative to antibiotics in ruminant feeding. Trends in Veterinary and Animal Sciences 1:
1-4.
Chiang, S.S. & Pan, T.M. 2012.
Beneficial effects of Lactobacillus
paracasei subsp. paracasei NTU
101 and its fermented products. Applied Microbiology and Biotechnology 93(3): 903-916.
Chichlowski, M., Croom, W.J., Edens,
F.W., McBride, B.W., Qiu, R., Chiang, C.C. & Koci, M.D. 2007.
Microarchitecture and spatial relationship between bacteria and ileal, cecal,
and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and
salinomycin. Poultry Science 86(6): 1121-1132.
Choi, J.H., Lee, K.,
Kim, D.W., Kil, D.Y., Kim, G.B. & Cha, C.J. 2018. Influence of dietary
avilamycin on ileal and cecal microbiota in broiler chickens. Poultry Science 97(3): 970-979.
Conway, T. & Cohen, P.S. 2015.
Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiology Spectrum 3(3): 1-24.
Dou, X., Gong, J., Han, X., Xu, M.,
Shen, H., Zhang, D. & Zou, J. 2016. Characterization of avian pathogenic Escherichia coli isolated in Eastern
China. Gene 576(1):
244-248.
Endens, F.W. 2003. An alternative for antibiotic use in poultry: Probiotics. Brazilian
Journal of Poultry Science 5(2): 75-97.
Foster, J.W. 2004. Escherichia coli acid resistance: Tales
of an amateur acidophile. Nature Reviews Microbiology 2(11): 898.
Fuller, R. 2001. The chicken gut
microflora and probiotic supplements. The Journal of Poultry Science 38(3): 189-196.
Gadde, U.D., Oh, S.,
Lillehoj, H.S. & Lillehoj, E.P. 2018. Antibiotic growth promoters
virginiamycin and bacitracin methylene disalicylate alter the chicken
intestinal metabolome. Scientific Reports 8(1): 3592.
Getachew, T. 2016. A review on
effects of probiotic supplementation in poultry performance and cholesterol
levels of egg and meat. Journal of World’s Poultry Research 6(1): 31-36.
Hayirli, A., Esenbuğa, N.,
Macit, M., Yörük, M.A., Yıldız, A. & Karaca, H. 2005. Nutrition
practice to alleviate the adverse effects of stress on laying performance,
metabolic profile and egg quality in peak producing hens: II. the probiotic
supplementation. Asian-Australasian Journal of Animal Sciences 18(12): 1752-1760.
ISA. 2019. ISA Brown. Cage production
systems, management report. https://www.isa-poultry.com/en/product/isa-brown/. Accessed on 27 March 2019.
Khaksefidi, A. & Ghoorchi, T.
2006. Effect of probiotic on performance and immunocompetence in broiler
chicks. The Journal of Poultry Science 43(3): 296-300.
Landman, W.J.M. & van Eck, J.H.H.
2017. The efficacy of inactivated Escherichia
coli autogenous vaccines against the E.
coli peritonitis syndrome in layers. Avian Pathology 46(6): 658-665.
Lokapirnasari, W.P., Pribadi, T.B.,
Al Arif, A., Soeharsono, S., Hidanah, S., Harijani, N., Najwan, R., Huda, K.,
Wardhani, H.C.P., Rahman, N.F.N. & Yulianto, A.B. 2019a. Potency of
probiotics Bifidobacterium spp. and Lactobacillus casei to improve growth
performance and business analysis in organic laying hens. Veterinary World 12(6): 860-867.
Lokapirnasari, W.P., Al Arif, A.,
Soeharsono, S., Fathinah, A., Najwan, R., Wardhani, H.C.P., Noorrahman, N.F.,
Huda, K., Ulfah, N. & Yulianto, A.B. 2019b. Improves in external and
internal egg quality of Japanese quail (Coturnix
coturnix japonica) by giving
lactic acid bacteria as alternative antibiotic growth promoter. Iranian
Journal of Microbiology 11(5): 406-411.
McGuckin, M.A., Lindén, S.K., Sutton,
P. & Florin, T.H. 2011. Mucin dynamics and enteric pathogens. Nature
Reviews Microbiology 9(4):
265-278.
Mokszycki, M.E., Leatham-Jensen, M.,
Steffensen, J.L., Zhang, Y., Krogfelt, K.A., Caldwell, M.E., Conway, T. &
Cohen, P.S. 2018. A simple in vitro gut model for studying the
interaction between Escherichia coli and the intestinal commensal microbiota in cecal mucus. Applied and
Environmental Microbiology 84(24):
e02166-18.
Møller, A.K., Leatham, M.P., Conway,
T., Nuijten, P.J., de Haan, L.A., Krogfelt, K.A. & Cohen, P.S. 2003. An Escherichia coli MG1655
lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal
mucus but fails to colonize the mouse large intestine. Infection and
Immunity 71(4): 2142-2152.
Mookiah, S., Sieo, C.C., Ramasamy,
K., Abdullah, N. & Ho, Y.W. 2014. Effects of dietary prebiotics, probiotic
and synbiotics on performance, caecal bacterial populations and caecal
fermentation concentrations of broiler chickens. Journal of the Science
of Food and Agriculture 94(2):
341-348.
Mountzouris, K.C., Tsitrsikos, P.,
Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G. & Fegeros, K. 2010.
Effects of probiotic inclusion levels in broiler nutrition on growth
performance, nutrient digestibility, plasma immunoglobulins, and cecal
microflora composition. Poultry Science 89(1): 58-67.
Nayebpor, M., Farhomand, P. &
Hashemi, A. 2007. Effects of different levels of direct fed microbial
(Primalac) on growth performance and humoral immune response in broiler
chickens. Journal of Animal and Veterinary Advance 6(11): 1308-1313.
Niewold, T.A. 2007. The nonantibiotic
anti-inflammatory effect of antimicrobial growth promoters, the real mode of
action? A hypothesis. Poultry Science 86(4): 605-609.
Paixao, A.C., Ferreira, A.C., Fontes,
M., Themudo, P., Albuquerque, T., Soares, M.C. & Corrêa de Sá, M.I. 2016.
Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates. Poultry
Science 95(7): 1646-1652.
Panda, A.K., Rama Rao, S.S., Raju,
M.V. & Sharma, S.S. 2008. Effect of probiotic (Lactobacillus sporogenes) feeding on egg production and quality,
yolk cholesterol and humoral immune response of White Leghorn layer
breeders. Journal of the Science of Food and Agriculture 88(1): 43-47.
Park, J.W., Jeong, J.S., Lee, S.I.
& Kim, I.H. 2016. Effect of dietary supplementation with a probiotic (Enterococcus faecium) on production
performance, excreta microflora, ammonia emission, and nutrient utilization in
ISA brown laying hens. Poultry Science 95(12): 2829-2835.
Paudel, S., Stessl, B., Hess, C.,
Zloch, A. & Hess, M. 2016. High genetic diversity among extraintestinal Escherichia coli isolates in pullets and
layers revealed by a longitudinal study. BMC Veterinary Research 12(1): 221.
Raka P.S., Sjofjan, O. & Radiati,
L.E. 2014. Effect of liquid probiotics mixed culture supplements through
drinking water on laying hens performance and yolk cholesterol. Journal of
World's Poultry Research 4(1): 05-09.
Rattanawut, J., Pimpa, O. &
Yamauchi, K.E. 2018. Effects of dietary bamboo vinegar supplementation on
performance, eggshell quality, ileal microflora composition, and intestinal
villus morphology of laying hens in the late phase of production. Animal
Science Journal 89(11):
1572-1580.
Shokryazdan, P., Sieo, C.C.,
Kalavathy, R., Liang, J.B., Alitheen, N.B., Faseleh Jahromi, M. & Ho, Y.W.
2014. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic
strains. BioMed Research International 2014: 927268.
Sohail, M.U., Rahman, Z.U., Ijaz, A.,
Yousaf, M.S., Ashraf, K., Yaqub, T. & Rehman, H. 2011. Single or combined
effects of mannan-oligosaccharides and probiotic supplements on the total
oxidants, total antioxidants, enzymatic antioxidants, liver enzymes, and serum
trace minerals in cyclic heat-stressed broilers. Poultry Science 90(11): 2573-2577.
Srinu, B., Rao, T.M., Reddy, P.M.
& Reddy, K.K. 2013. Evaluation of different lactic acid bacterial strains
for probiotic characteristics. Veterinary World 6(10): 785-788.
Tang, S.G.H., Sieo, C.C., Ramasamy,
K., Saad, W.Z., Wong, H.K. & Ho, Y.W. 2017. Performance, biochemical and
haematological responses, and relative organ weights of laying hens fed diets
supplemented with prebiotic, probiotic and synbiotic. BMC Veterinary
Research 13(1): 248.
Untoo, M., Banday, M.T., Afzal, I.,
Adil, S., Baba, I.A. & Khurshid, A. 2018. Potential of probiotics in
poultry production. Journal
of Entomology and Zoology Studies 6(3): 1293-1300.
Willis, W.L., Isikhuemhen, O.S. & Ibrahim, S.A. 2007.
Performance assessment of broiler chickens given mushroom extract alone or in
combination with probiotics. Poultry Science 86(9): 1856-1860.
Yahfoufi, N., Mallet, J.F., Graham, E. & Matar, C. 2018.
Role of probiotics and prebiotics in immunomodulation. Current Opinion
in Food Science 20:
82-91.
Yulianto, B. & Lokapirnasari, W.P. 2018.
Isolation and identification of lactic acid bacteria from the digestive tract
of kampung chicken (Gallus gallus domesticus). The Philippine
Journal of Veterinary Medicine 55(1):
67-72.
*Pengarang
untuk surat-menyurat; email: widya-p-l@fkh.unair.ac.id
|