Sains Malaysiana 49(6)(2020): 1439-1450

http://dx.doi.org/10.17576/jsm-2020-4906-22

 

Determination of the Radiological Risk from the Natural Radioactivity in Irrigation at Selected Areas of Peninsular Malaysia

(Penentuan Risiko Radiologi daripada Keradioaktifan Semula Jadi dalam Pengairan di Kawasan Terpilih di Semenanjung Malaysia)

 

KHOIRUL SOLEHAH ABDUL RAHIM1, ZALITA ZAINUDDIN1*, MOHD IDZAT IDRIS1, WAHMISARI PRIHARTI2 & MURTADHA SH. ASWOOD3

 

1Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Electrical Engineering, Telkom University, 40527 Bandung, Indonesia

 

3Department of Physics, College of Education, University of Al-Qadisiya, Iraq

 

Diserahkan: 17 Disember 2019/Diterima: 24 Februari 2020

 

ABSTRACT

This study involves a comprehensive analysis of 226Ra, 232Th, and 40K concentration from irrigation water samples. Water samples were obtained, and the physical parameters were examined. Subsequently, the corresponding radiological risks to human health were estimated. The concentration levels of 226Ra, 232Th, and 40K in water samples amounted to 1.51 ± 0.30, 0.17 ± 0.09, and 7.67 ± 3.07 Bq L-1, respectively, which were within the concentration levels reported in the literature from Malaysia and other countries worldwide. Based on the food intake rate by MoH and UNSCEAR, the annual ingestion effective dose (ID) and the cancer risks corresponding to radionuclide intake in irrigation were below the recommended maximum values. Meanwhile, the average hazard indices and annual outdoor effective dose (ED) amounted to 0.01 and 1.39 mSv year-1, respectively. It was inferred from the findings of this study that the water used as the sample does not have any significant radiological impacts to human body and is safe to be used as irrigation in the related area.

 

Keywords: Gamma spectrometry; hazard indices; health risk; irrigation water; radionuclide concentration

 

ABSTRAK

Kajian ini melibatkan analisis komprehensif terhadap kepekatan radionuklid 226Ra, 232Th dan 40K daripada sampel air pengairan. Sampel air telah diperoleh, dan parameter fizikal telah dinilai. Seterusnya, risiko radiologi berikutan dedahan sinaran terhadap kesihatan manusia telah dianggar. Aras kepekatan 226Ra, 232Th dan 40K dalam sampel air adalah masing-masing 1.51 ± 0.30, 0.17 ± 0.09 dan 7.67 ± 3.07 Bq L-1, masih berada dalam lingkungan aras kepekatan yang dilaporkan di dalam kepustakaan sama ada dari Malaysia atau negara-negara lain di seluruh dunia. Berdasarkan kepada kadar pengambilan makanan oleh MoH dan UNSCEAR, dos pemakanan berkesan tahunan (ID) dan risiko kanser berikutan pengambilan radionuklid dalam air siraman masih berada di bawah nilai maksimum yang disarankan. Sementara itu, purata indeks bahaya luaran dan dos luaran berkesan tahunan (ED) adalah berjumlah 0.01 dan 1.39 mSv tahun-1 masing-masing. Ia disimpulkan daripada hasil kajian ini bahawa air daripada sampel kajian ini tidak mempunyai kesan radiologi yang ketara kepada tubuh badan manusia, dan selamat untuk digunakan sebagai pengairan di kawasan yang berkaitan. 

 

Kata kunci: Air pengairan; indeks bahaya; kepekatan radionuklid; risiko kesihatan; spektrometri gama

 

RUJUKAN

Agbalagba, E. & Onoja, R. 2011. Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. Journal of Environmental Radioactivity 102(7): 667-671.

Ahmad, N., Rehman, J., Rehman, J. & Nasar, G. 2019a. Assessments of 226Ra and 222Rn concentration in well and tap water from Sik, Malaysia, and consequent dose estimates. Human and Ecological Risk Assessment: An International Journal 25(7): 1-10.

Ahmad, N., Rehman, J., Rehman, J. & Nasar, G. 2019b. Effect of geochemical properties (pH, conductivity, TDS) on natural radioactivity and dose estimation in water samples in Kulim, Malaysia. Human and Ecological Risk Assessment: An International Journal 25(7): 1-9.

Ahmed, N.K. 2004. Natural radioactivity of ground and drinking water in some areas of Upper Egypt. Turkish Journal of Engineering and Environmental Sciences 28: 345-354. 

Alfatih, A.A., Isam, S., Ibrahim, A., El Din, S., Siddeeg, M.B., Hatem, E., Hajo, I., Walid, H. & Yousif, E.H. 2008. Investigation of natural radioactivity levels in water around Kadugli, Sudan. Applied Radiation and Isotopes 66(11): 1650-1653.

Almayahi, B.A., Tajuddin, A.A. & Jaafar, M.S. 2012. Radiation hazard indices of soil and water samples in Northern Malaysian Peninsular. Applied Radiation and Isotopes 70(11): 2652-2660.

Al-Nafiey, M.S., Jaafar, M.S. & Bauk, S. 2014. Measuring radon concentration and toxic elements in the irrigation water of the agricultural areas in Cameron Highlands, Malaysia. Sains Malaysiana 43(2): 227-231.

Argonne National Laboratory. 2005. Human health fact sheet: Potassium.

Ayers, R.S. & Westcot, D.W. 1985. Water Quality for Agriculture. Rome: Food and Agriculture Organization of the United Nations.

Carvalho, F.P., Oliveira, J.M. & Malta, M. 2009. Analyses of radionuclides in soil, water, and agriculture products near the Urgeiriça uranium mine in Portugal. Journal of Radioanalytical and Nuclear Chemistry 281(3): 479-484.

Clean Water Team (CWT). 2004. Electrical conductivity/salinity Fact Sheet, FS3.1.3.0(EC). In The Clean Water Team Guidance Compendium for Watershed Monitoring and Assessment, version 2.0. Division of Water Quality, California State Water Resources Control Board (SWRCB), Sacramento, CA.

Cohen, B.L. & Lee, I.S. 1991. Catalog of risks extended and updated. Health Physics 61: 317-335.

Delacroix, D., Guerre, J.P., Leblanc, P. & Hickman, C. 2002. Radionuclide and radiation protection data. Radiation Protection Dosimetry 98(1):  9-168.

Diab, H.M., Nouh, S.A., Hamdy, A. & EL-Fiki, S.A. 2007. Evaluation of natural radioactivity in a cultivated area around a fertilizer factory. Journal of Nuclear and Radiation Physics 3(1): 53-62.

Dominguez-Gadea, L. & Cerezo, L. 2011. Decontamination of radioisotopes. Reports of Practical Oncology and Radiotheraphy 16(4): 147-162.

Ehsanpour, E., Abdi, M.R., Mostajaboddavati, M. & Bagheri, H. 2014. 226Ra, 232Th and 40K contents in water samples in part of central deserts in Iran and their potential radiological risk to human population. Journal of Environmental Health Science & Engineering 12(1): 80.

El-Gamal, H., Sefelnasr, A. & Salaheldin, G. 2019. Determination of natural radionuclides for water resources on the West Bank of the Nile River, Assiut Governorate, Egypt. Water 11(311): 1-13.

El-Kamel, A.E., El-Mageed, A.I.A., Abbady, A.E., Harb, S. & Saleh, I.I. 2012. Natural radioactivity of environmental samples and their impact on the population at Assalamia-Alhomira Area in Yemen. Geosciences 2(5): 125-132.

El-Mageed, A.I.A., El-Kamel, A.E., Abbady, A.E., Harb, S. & Saleh, I.I. 2013. Natural radioactivity of ground and hot spring water in some areas in Yemen. Desalination 321: 28-31.

Environmental Protection Agency (EPA). Radionuclide Basics: Thorium. https://www.epa.gov/radiation/radionuclide-basics-thorium.

Fondriest Environmental, Inc. Conductivity, Salinity and Total Dissolved Solids. Fundamentals of Environmental Measurements. https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-tds/.

IAEA. 2004.  Radiation, People and the Environment: A Broad View of Ionising Radiation, Its Effects and Uses as Well as the Measures in Place to it Safely. Vienna: IAEA.

IARC. 1988. Evaluation of the Carcinogenic Risks to Humans, Lyon. http://monographs.iarc.fr/ENG/Monographs/vol43/mono43. pdf. Accessed on 24 June 2019.

ICRP. 2012. Compendium of Dose Coefficients based on ICRP Publication 60: ICRP Publication 119. Oxford: Pergamon Press.

Idris, M.I., Siong, K.K. & Fadzil, S.M. 2017. Measurement of 238U and 232Th radionuclides in ilmenite and synthetic rutile. IOP Conf. Series: Materials Science and Engineering 298: 012011.

Isiyaka, H.A. & Juahir, H. 2015. Analysis of surface water pollutions in the Kinta River using multivariate technique. Malaysian Journal of Analytical Science 19(5): 1019-1031.

Kpeglo, D.O.K., Mantero, J., Darko, E.O., Emi-Reynolds, G., Akaho, E.H.K., Faanu, A. & Garcia-Tenorio. 2014. Radiological exposure assessment from soil, underground and surface water in communities along the coast of a shallow water offshore oilfield in Ghana. Radiation Protection Dosimetry 163(3): 341-352.

Lee, S.K., Wagiran, H., Ramli, A.T., Apriantoro, N.H. & Wood, A.K. 2009. Radiological monitoring: Terrestrial natural radionuclides in Kinta District, Perak, Malaysia. Journal of Environmental Activity100(5): 368-374.

Mavrogianopoulos, G.M. 2016. Irrigation dose according to substrate characteristics, in hydroponic systems. Open Agriculture 1: 1-16.

Mazlin Mokhtar, Jamil Tajam & Sukarno Wagiman. 2019. Determination of the sediment contamination level in Dangli Waters of Langkawi UNESCO Global Geopark Kedah, Malaysia. Sains Malaysiana 48(1): 45-59.

Meyers-Schöne, L., Fischer, N.T. & Miller, M.L. 2003. Consideration of background radiation in ecological risk assessments. Human and Ecological Risk Assessment: An International Journal 9(7): 1633-1638.

Mercat-Rommens, C., Louvat, D., Duffa, C. & Sugier, A. 2005. Comparison between radiological and chemical health risks assessments: The Nord-Cotentin Study. Human and Ecological Risk Assessment: An International Journal 11(3): 627-644.

Malaysian National Cancer Registry Report 2007-2011 (MNCR). 2016. Putrajaya. http://nci.moh.gov.my.

Norbert, S., Tanot, U., Muzaffar, Y. & Muhammad, A.D. 2019. Physico-chemical characterisation and potential health benefit of the Hulu Langat Hot Spring in Selangor, Malaysia. Sains Malaysiana 48(11): 2451-2462.

Priharti, W. & Samat, S.B. 2017. Penilaian kepekatan aktiviti radionuklid tabii 226Ra, 232Th dan 40K dalam makanan di kawasan tengah Malaysia. Sains Malaysiana 46(6): 945-951.

Raj, J.K. 2002. Land use changes, soil erosion and decreased base flow of rivers at Cameron Highlands, Peninsular Malaysia. Geological Society of Malaysia Annual Geological Conference 2002: Keynote Paper: pp. 3-10.

Ravikumar, P. & Somashekar, R.K. 2017. Distribution of 222Rn in groundwater and estimation of resulting radiation dose to different age groups: A case study from Bangalore City. Human and Ecological Risk Assessment: An International Journal 24(1): 174-185.

Sánchez-González, S., Curto, N., Caravantes, P. & García-Sánchez, A. 2014. Natural gamma radiation and uranium distribution in soils and waters in the Agueda River Basin (Spain-Portugal). Procedia Earth and Planetary Science 8: 93-97.

Saqan, S.A., Kullab, M.K. & Ismail, A.M. 2001. Radionuclides in hot mineral spring waters in Jordan. Journal of Environment Radioactivity 52: 99-107.

Sar, S.K., Diwan, V., Biswas, S., Singh, S., Sahu, M., Jindal, M.K. & Arora, A. 2017. Study of uranium level in groundwater of Balod district of Chhattisgarh State, India and assessment of health risk. Human and Ecological Risk Assessment: An International Journal 24(3): 691-698.

Solehah, A.R. & Samat S.B. 2018. Radiological impact from natural radionuclide activity concentrations in soil and vegetables at former tin mining area and non-mining area in Peninsular Malaysia. Journal of Radioanalytical and Nuclear Chemistry 315(2): 127-136.

Suzuki, Y., Yasutaka, T., Fujimura, S., Yabuki, T., Sato, M., Yoshioka, K. & Inubushi, K. 2015. Effect of the concentration of radiocesium dissolved in irrigation water on the concentration of radiocesium in brown rice. Soil Science and Plant Nutrition 61(2): 191-199.

Szabo, Z., DePaul, V.T., Fischer, J.M., Kraemer, T.F. & Jacobsen, E. 2011. Occurrence and geochemistry of radium in water from principal drinking-water aquifer systems of the United States. Applied Geochemistry 27(3): 729-752. 

Talal, A. & Neil, M.J.C. 2016. Derivation of irrigation requirements for radiological impact assessments. Journal of Environmental Radioactivity 16: 91-103.

UNSCEAR. 2000. Sources and Effects of Ionizing Radiation. New York: United Nations.

WHO. 2011. Guidelines for Drinking-Water Quality. 4th ed. Switzerland: World Health Organization.

Yusof, A.M., Mahat, M.N., Omar, N. & Wood, A.K.H. 2001. Water quality studies in an aquatic environment of disused tin-mining pools and in drinking water. Ecological Engineering 16(3): 405-414.

Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of impregnated magnetic particles on oil palm frond activated carbon for metal ions removal. Sains Malaysiana 46(5): 773-782.

 

*Pengarang untuk surat-menyurat; email: zazai@ukm.edu.my

   

 

 

 

 

sebelumnya