Sains Malaysiana 49(6)(2020): 1439-1450
http://dx.doi.org/10.17576/jsm-2020-4906-22
Determination
of the Radiological Risk from the Natural Radioactivity in Irrigation at
Selected Areas of Peninsular Malaysia
(Penentuan Risiko Radiologi daripada Keradioaktifan
Semula Jadi dalam Pengairan di Kawasan Terpilih di Semenanjung Malaysia)
KHOIRUL
SOLEHAH ABDUL RAHIM1, ZALITA ZAINUDDIN1*, MOHD IDZAT
IDRIS1, WAHMISARI PRIHARTI2 & MURTADHA SH. ASWOOD3
1Department
of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School
of Electrical Engineering, Telkom University, 40527 Bandung, Indonesia
3Department
of Physics, College of Education, University of Al-Qadisiya, Iraq
Diserahkan:
17 Disember 2019/Diterima: 24 Februari 2020
ABSTRACT
This study
involves a comprehensive analysis of 226Ra, 232Th, and 40K
concentration from irrigation water samples. Water samples were obtained, and
the physical parameters were examined. Subsequently, the corresponding
radiological risks to human health were estimated. The concentration levels of 226Ra, 232Th, and 40K in water samples amounted to 1.51 ± 0.30,
0.17 ± 0.09, and 7.67 ± 3.07 Bq L-1, respectively, which were within
the concentration levels reported in the literature from Malaysia and other
countries worldwide. Based on the food intake rate by MoH and UNSCEAR, the
annual ingestion effective dose (ID)
and the cancer risks corresponding to radionuclide intake in irrigation were
below the recommended maximum values. Meanwhile, the average hazard indices and
annual outdoor effective dose (ED)
amounted to 0.01 and 1.39 mSv year-1, respectively. It was inferred
from the findings of this study that the water used as the sample does not have
any significant radiological impacts to human body and is safe to be used as
irrigation in the related area.
Keywords: Gamma spectrometry; hazard indices; health risk;
irrigation water; radionuclide concentration
ABSTRAK
Kajian ini
melibatkan analisis komprehensif terhadap kepekatan radionuklid 226Ra, 232Th dan 40K daripada sampel air pengairan. Sampel air
telah diperoleh, dan parameter fizikal telah dinilai. Seterusnya, risiko
radiologi berikutan dedahan sinaran terhadap kesihatan manusia telah dianggar.
Aras kepekatan 226Ra, 232Th dan 40K dalam
sampel air adalah masing-masing 1.51 ± 0.30, 0.17 ± 0.09 dan 7.67 ± 3.07 Bq L-1,
masih berada dalam lingkungan aras kepekatan yang dilaporkan di dalam
kepustakaan sama ada dari Malaysia atau negara-negara lain di seluruh dunia.
Berdasarkan kepada kadar pengambilan makanan oleh MoH dan UNSCEAR, dos
pemakanan berkesan tahunan (ID) dan risiko kanser berikutan pengambilan radionuklid dalam air siraman masih
berada di bawah nilai maksimum yang disarankan. Sementara itu, purata indeks
bahaya luaran dan dos luaran berkesan tahunan (ED) adalah berjumlah 0.01 dan 1.39 mSv tahun-1 masing-masing. Ia disimpulkan daripada hasil kajian ini bahawa air daripada
sampel kajian ini tidak mempunyai kesan radiologi yang ketara kepada tubuh
badan manusia, dan selamat untuk digunakan sebagai pengairan di kawasan yang
berkaitan.
Kata
kunci: Air pengairan; indeks bahaya; kepekatan
radionuklid; risiko kesihatan; spektrometri gama
RUJUKAN
Agbalagba, E.
& Onoja, R. 2011. Evaluation of natural radioactivity in soil, sediment and
water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. Journal of Environmental Radioactivity 102(7): 667-671.
Ahmad, N.,
Rehman, J., Rehman, J. & Nasar, G. 2019a. Assessments of 226Ra
and 222Rn concentration in well and tap water from Sik, Malaysia,
and consequent dose estimates. Human and Ecological Risk Assessment: An
International Journal 25(7): 1-10.
Ahmad, N.,
Rehman, J., Rehman, J. & Nasar, G. 2019b. Effect of geochemical properties
(pH, conductivity, TDS) on natural radioactivity and dose estimation in water
samples in Kulim, Malaysia. Human and
Ecological Risk Assessment: An International Journal 25(7): 1-9.
Ahmed, N.K. 2004.
Natural radioactivity of ground and drinking water in some areas of Upper
Egypt. Turkish Journal of Engineering and Environmental Sciences 28:
345-354.
Alfatih, A.A.,
Isam, S., Ibrahim, A., El Din, S., Siddeeg, M.B., Hatem, E., Hajo, I., Walid,
H. & Yousif, E.H. 2008. Investigation of natural radioactivity levels in
water around Kadugli, Sudan. Applied
Radiation and Isotopes 66(11): 1650-1653.
Almayahi,
B.A., Tajuddin, A.A. & Jaafar, M.S. 2012. Radiation hazard indices of soil
and water samples in Northern Malaysian Peninsular. Applied Radiation and Isotopes 70(11): 2652-2660.
Al-Nafiey, M.S.,
Jaafar, M.S. & Bauk, S. 2014. Measuring radon concentration and toxic elements
in the irrigation water of the agricultural areas in Cameron Highlands,
Malaysia. Sains Malaysiana 43(2):
227-231.
Argonne National
Laboratory. 2005. Human health fact sheet: Potassium.
Ayers, R.S. &
Westcot, D.W. 1985. Water Quality for
Agriculture. Rome: Food and Agriculture Organization of the United Nations.
Carvalho, F.P.,
Oliveira, J.M. & Malta, M. 2009. Analyses of radionuclides in soil, water,
and agriculture products near the Urgeiriça uranium mine in Portugal. Journal of Radioanalytical and Nuclear
Chemistry 281(3): 479-484.
Clean Water Team
(CWT). 2004. Electrical conductivity/salinity Fact Sheet, FS3.1.3.0(EC). In The Clean Water Team Guidance Compendium for
Watershed Monitoring and Assessment, version 2.0. Division of Water
Quality, California State Water Resources Control Board (SWRCB), Sacramento,
CA.
Cohen,
B.L. & Lee, I.S. 1991. Catalog of risks extended and updated. Health Physics 61: 317-335.
Delacroix,
D., Guerre, J.P., Leblanc, P. & Hickman, C. 2002. Radionuclide and
radiation protection data. Radiation
Protection Dosimetry 98(1): 9-168.
Diab, H.M., Nouh,
S.A., Hamdy, A. & EL-Fiki, S.A. 2007. Evaluation of natural radioactivity
in a cultivated area around a fertilizer factory. Journal of Nuclear and Radiation Physics 3(1): 53-62.
Dominguez-Gadea,
L. & Cerezo, L. 2011. Decontamination of radioisotopes. Reports of Practical Oncology and
Radiotheraphy 16(4): 147-162.
Ehsanpour,
E., Abdi, M.R., Mostajaboddavati, M. & Bagheri, H. 2014. 226Ra, 232Th
and 40K contents in water samples in part of central deserts in Iran
and their potential radiological risk to human population. Journal of Environmental Health Science & Engineering 12(1):
80.
El-Gamal, H.,
Sefelnasr, A. & Salaheldin, G. 2019. Determination of natural radionuclides
for water resources on the West Bank of the Nile River, Assiut Governorate,
Egypt. Water 11(311): 1-13.
El-Kamel,
A.E., El-Mageed, A.I.A., Abbady, A.E., Harb, S. & Saleh, I.I. 2012. Natural
radioactivity of environmental samples and their impact on the population at
Assalamia-Alhomira Area in Yemen. Geosciences 2(5): 125-132.
El-Mageed,
A.I.A., El-Kamel, A.E., Abbady, A.E., Harb, S. & Saleh, I.I. 2013. Natural
radioactivity of ground and hot spring water in some areas in Yemen. Desalination 321: 28-31.
Environmental
Protection Agency (EPA). Radionuclide
Basics: Thorium. https://www.epa.gov/radiation/radionuclide-basics-thorium.
Fondriest
Environmental, Inc. Conductivity,
Salinity and Total Dissolved Solids. Fundamentals of Environmental
Measurements. https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-tds/.
IAEA. 2004. Radiation, People and the Environment: A
Broad View of Ionising Radiation, Its Effects and Uses as Well as the Measures
in Place to it Safely. Vienna: IAEA.
IARC. 1988. Evaluation of the Carcinogenic Risks to
Humans, Lyon. http://monographs.iarc.fr/ENG/Monographs/vol43/mono43. pdf.
Accessed on 24 June 2019.
ICRP. 2012. Compendium of Dose Coefficients based on
ICRP Publication 60: ICRP Publication 119. Oxford: Pergamon Press.
Idris,
M.I., Siong, K.K. & Fadzil, S.M. 2017. Measurement of 238U and 232Th
radionuclides in ilmenite and synthetic rutile. IOP Conf. Series: Materials Science and Engineering 298: 012011.
Isiyaka,
H.A. & Juahir, H. 2015. Analysis of surface water pollutions in the Kinta
River using multivariate technique. Malaysian
Journal of Analytical Science 19(5): 1019-1031.
Kpeglo, D.O.K.,
Mantero, J., Darko, E.O., Emi-Reynolds, G., Akaho, E.H.K., Faanu, A. &
Garcia-Tenorio. 2014. Radiological exposure assessment from soil, underground
and surface water in communities along the coast of a shallow water offshore
oilfield in Ghana. Radiation Protection
Dosimetry 163(3): 341-352.
Lee, S.K.,
Wagiran, H., Ramli, A.T., Apriantoro, N.H. & Wood, A.K. 2009. Radiological
monitoring: Terrestrial natural radionuclides in Kinta District, Perak,
Malaysia. Journal of Environmental
Activity100(5): 368-374.
Mavrogianopoulos,
G.M. 2016. Irrigation dose according to substrate characteristics, in
hydroponic systems. Open Agriculture 1: 1-16.
Mazlin
Mokhtar, Jamil Tajam & Sukarno Wagiman. 2019. Determination of the sediment
contamination level in Dangli Waters of Langkawi UNESCO Global Geopark Kedah,
Malaysia. Sains Malaysiana 48(1): 45-59.
Meyers-Schöne,
L., Fischer, N.T. & Miller, M.L. 2003. Consideration of background
radiation in ecological risk assessments. Human
and Ecological Risk Assessment: An International Journal 9(7): 1633-1638.
Mercat-Rommens,
C., Louvat, D., Duffa, C. & Sugier, A. 2005. Comparison between
radiological and chemical health risks assessments: The Nord-Cotentin Study. Human and Ecological Risk Assessment: An
International Journal 11(3): 627-644.
Malaysian
National Cancer Registry Report 2007-2011 (MNCR). 2016. Putrajaya. http://nci.moh.gov.my.
Norbert, S.,
Tanot, U.,
Muzaffar, Y. & Muhammad, A.D.
2019. Physico-chemical characterisation and potential health benefit of the
Hulu Langat Hot Spring in Selangor, Malaysia. Sains Malaysiana 48(11):
2451-2462.
Priharti,
W. & Samat, S.B. 2017. Penilaian kepekatan aktiviti radionuklid tabii 226Ra, 232Th dan 40K dalam makanan di kawasan tengah Malaysia. Sains Malaysiana 46(6): 945-951.
Raj,
J.K. 2002. Land use changes, soil erosion and decreased base flow of rivers at
Cameron Highlands, Peninsular Malaysia. Geological
Society of Malaysia Annual Geological Conference 2002: Keynote Paper: pp.
3-10.
Ravikumar, P.
& Somashekar, R.K. 2017. Distribution of 222Rn in groundwater
and estimation of resulting radiation dose to different age groups: A case
study from Bangalore City. Human and
Ecological Risk Assessment: An International Journal 24(1): 174-185.
Sánchez-González,
S., Curto, N., Caravantes, P. & García-Sánchez, A. 2014. Natural gamma
radiation and uranium distribution in soils and waters in the Agueda River
Basin (Spain-Portugal). Procedia Earth
and Planetary Science 8: 93-97.
Saqan, S.A.,
Kullab, M.K. & Ismail, A.M. 2001. Radionuclides in hot mineral spring
waters in Jordan. Journal of Environment
Radioactivity 52: 99-107.
Sar, S.K., Diwan,
V., Biswas, S., Singh, S., Sahu, M., Jindal, M.K. & Arora, A. 2017. Study
of uranium level in groundwater of Balod district of Chhattisgarh State, India
and assessment of health risk. Human and
Ecological Risk Assessment: An International Journal 24(3): 691-698.
Solehah, A.R.
& Samat S.B. 2018. Radiological impact from natural radionuclide activity
concentrations in soil and vegetables at former tin mining area and non-mining
area in Peninsular Malaysia. Journal of
Radioanalytical and Nuclear Chemistry 315(2): 127-136.
Suzuki, Y.,
Yasutaka, T., Fujimura, S., Yabuki, T., Sato, M., Yoshioka, K. & Inubushi,
K. 2015. Effect of the concentration of radiocesium dissolved in irrigation
water on the concentration of radiocesium in brown rice. Soil Science and Plant Nutrition 61(2): 191-199.
Szabo, Z.,
DePaul, V.T., Fischer, J.M., Kraemer, T.F. & Jacobsen, E. 2011. Occurrence
and geochemistry of radium in water from principal drinking-water aquifer
systems of the United States. Applied
Geochemistry 27(3): 729-752.
Talal,
A. & Neil, M.J.C. 2016. Derivation of irrigation requirements for
radiological impact assessments. Journal
of Environmental Radioactivity 16: 91-103.
UNSCEAR. 2000. Sources and Effects of Ionizing Radiation. New York: United Nations.
WHO. 2011. Guidelines
for Drinking-Water Quality. 4th ed. Switzerland: World Health Organization.
Yusof,
A.M., Mahat, M.N., Omar, N. & Wood, A.K.H. 2001. Water quality studies in
an aquatic environment of disused tin-mining pools and in drinking water. Ecological Engineering 16(3): 405-414.
Zainol,
M.M., Amin, N.A.S. & Asmadi, M. 2017. Preparation and characterization of
impregnated magnetic particles on oil palm frond activated carbon for metal
ions removal. Sains Malaysiana 46(5):
773-782.
*Pengarang
untuk surat-menyurat; email: zazai@ukm.edu.my
|