Sains Malaysiana 49(6)(2020): 1471-1478
http://dx.doi.org/10.17576/jsm-2020-4906-25
A
Security Upgrade on the GGH Lattice-Based Cryptosystem
(Suatu Naik-taraf Keselamatan terhadap Sistem-kripto
berasaskan Kekisi GGH)
ARIF MANDANGAN1,2, HAILIZA KAMARULHAILI1 &
MUHAMMAD ASYRAF ASBULLAH3,4*
1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Pulau Pinang, Malaysia
2Mathematics,
Real Time Graphics and Visualization Laboratory, Faculty of Sciences &
Natural Resources, Universiti Malaysia Sabah, Jalan UMS 88400 Kota Kinabalu,
Sabah, Malaysia
3Laboratory of Cryptography, Analysis and Structure, Institute
for Mathematical Sciences, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
4Centre of Foundation Studies for Agricultural Science,
Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Datul Ehsan, Malaysia
Diserahkan: 9 Ogos 2019/Diterima:
12 Februari 2020
ABSTRACT
Due to the Nguyen’s attack, the
Goldreich-Goldwasser-Halevi (GGH) encryption scheme, simply referred to as GGH
cryptosystem, is considered broken. The GGH cryptosystem was initially
addressed as the first practical lattice-based cryptosystem. Once the
cryptosystem is implemented in a lattice dimension of 300 and above, its
inventors was conjectured that the cryptosystem is intractable. This conjecture
was based on thorough security analyses on the cryptosystem against some
powerful attacks. This conjecture became more concrete when all initial efforts
for decrypting the published GGH Internet Challenges were failed. However, a
novel strategy by the Nguyen’s attack for simplifying the underlying
Closest-Vector Problem (CVP) instance that arose from the cryptosystem, had
successfully decrypted almost all the challenges and eventually made the
cryptosystem being considered broken. Therefore, the Nguyen’s attack is
considered as a fatal attack on the GGH cryptosystem. In this paper, we
proposed a countermeasure to combat the Nguyen’s attack. By implementing the
proposed countermeasure, we proved that the simplification of the underlying
CVP instance could be prevented. We also proved that, the upgraded GGH
cryptosystem remains practical where the decryption could be done without
error. We are optimistic that, the upgraded GGH cryptosystem could make a
remarkable return into the mainstream discussion of the lattice-based cryptography.
Keywords: Closest vector problem; GGH cryptosystem; lattice-based cryptography;
post-quantum cryptography; shortest-vector problem
ABSTRAK
Berpunca daripada serangan Nguyen, skim penyulitan
Goldreich-Goldwasser-Halevi (GGH), secara ringkasnya dirujuk sebagai
sistem-kripto GGH, kini dipertimbangkan sebagai suatu skim yang telah rosak,
iaitu tidak lagi selamat. Pada awalnya, sistem-kripto GGH pernah dirujuk
sebagai sistem-kripto berasaskan-kekisi pertama yang praktikal. Apabila
sistem-kripto ini dilaksanakan dalam kekisi berdimensi 300 dan ke atas, maka
para pencipta sistem-kripto ini pernah menjangkakan bahawa ia adalah selamat.
Jangkaan ini telah dibuat berdasarkan analisis keselamatan yang terperinci
terhadap sistem-kripto tersebut menentang beberapa serangan yang hebat.
Jangkaan tersebut telah menjadi semakin kukuh apabila kesemua usaha awal untuk
menyahsulitkan beberapa Cabaran GGH yang dipaparkan di Internet (Cabaran
Internet GGH) telah mengalami kegagalan. Namun demikian, suatu strategi baharu oleh
serangan Nguyen dengan meringkaskan contoh Masalah Vektor-Terhampir (MVT) yang
hadir secara terselindung disebalik sistem-kripto GGH, telah berjaya
menyahsulitkan hampir kesemua Cabaran Internet GGH. Kesannya, sistem-kripto GGH
telah dipertimbangkan sebagai suatu skim yang rosak dan tidak lagi selamat.
Maka, serangan Nguyen sudah sewajarnya dipertimbangkan sebagai serangan
pemusnah terhadap sistem-kripto GGH. Dalam kajian ini, kami mencadangkan suatu
tindakan menyelamat bagi menentang serangan Nguyen. Melalui pelaksanaan
tindakan menyelamat yang dicadangkan ini, kami buktikan bahawa proses
meringkaskan contoh MVT disebalik sistem-kripto GGH kini dapat dielakkan. Kami
juga buktikan bahawa sistem-kripto GGH yang telah dinaik-taraf ini masih kekal
praktikal yang mana proses penyahsulitannya boleh dilaksanakan tanpa sebarang
kesilapan. Kami optimis bahawa sistem-kripto GGH yang telah dinaik-taraf tahap
keselamatannya ini mampu membuat penampilan semula ke medan perbincangan arus
perdana dalam arena kriptografi berasaskan-kekisi.
Kata kunci: Kriptografi berasaskan kekisi; kriptografi
pasca kuantum; masalah vektor terhampir; masalah vektor terpendek;
sistem-kripto GGH
RUJUKAN
Ajtai, M. & Dwork, C. 1997. A
public-key cryptosystem with worst-case/average-case equivalence. Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing. El Paso, Texas. pp. 284-293.
Barros, C.F.de. &
Schechter, L.M. 2014. GGH may not be dead after all. Proceedings of XXXV Brazilian
National Congress in Applied and Computational Mathematics (CNMAC2014). Natal, Brazil.
Elgamal, T. 1985. A
public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transaction on Information Theory 31(4): 469-472.
Galbraith, S.D. 2012. Mathematics of Public Key
Cryptography. 1st ed. New York: Cambridge University Press.
Goldreich, O.,
Goldwasser, S. & Halevi, S. 1997a. Public-key cryptosystems from lattice
reduction problems. Proceedings
of 17th Annual International Cryptology Conference. Santa Barbara, California, USA. pp. 112-131.
Goldreich, O., Goldwasser, S. &
Halevi, S. 1997b. Challenges for the GGH
Cryptosystem.http://groups.csail.mit.edu/cis/lattice/challenge.html.
Hoffstein, J., Pipher, J. & Silverman, J.H. 1998.
NTRU: A new high-speed public key cryptosystem. Proceedings of the Third International Algorithmic Number Theory
Symposium, ANTS’98. pp. 267-288.
Hoffstein, J., Pipher, J. & Silverman,
J.H. 2008. An Introduction to Mathematical Cryptography. New York:
Springer-Verlag.
Ismail,
E.S. & Hasan, Y.A. 2006. A new version of ElGamal signature scheme. Sains Malaysiana 35(2): 69-72.
Jaju, S.A. & Chowhan, S.S. 2015. A modified RSA
algorithm to enhance security for digital signature. 2015
International Conference and Workshop on Computing and Communication (IEMCON). Vancouver, Canada. pp. 1-5.
Koblitz, N. 1987.
Elliptic curve cryptosystems. Mathematics of Computation 48(177):
203-209.
Lyubashevsky,
V., Peikert, C. & Regev, O. 2010. On ideal lattices and learning with
errors over rings. Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Berlin, Heidelberg. pp. 1-23.
Mandangan, A.,
Kamarulhaili, H. & Asbullah, M.A. 2019. On the smallest-basis problem underlying the GGH lattice-based
cryptosystem. Malaysian Journal of Mathematical Sciences 13(S): 1-11.
Mandangan, A.,
Kamarulhaili, H. & Asbullah, M.A. 2018. On the underlying hard lattice problems of GGH encryption
scheme. Proceedings of the 6th International Cryptology and Information Security
Conference 2018 (CRYPTOLOGY2018). Port Dickson, Negeri Sembilan,
Malaysia. pp. 42-50.
Micciancio, D. & Regev, O. 2009. Lattice-based cryptography. In Post-Quantum Cryptography, edited by Bernstein, D.J., Buchmann, J.
& Dahmen, E. Berlin,
Heidelberg: Springer.
Nguyen, P. 1999. Cryptanalysis of the
Goldreich-Goldwasser-Halevi cryptosystem from Crypto ‘97. In Advances
in Cryptology - CRYPTO’ 99, edited by Wiener, M. Berlin, Heidelberg: Springer.
Pol, J.H.v.d. 2011. Lattice-based cryptography. Master of Science Theses, Eindhoven University of Technology (Unpublished).
Regev, O. 2005. On lattices, learning with
errors, random linear codes, and cryptography. Stoc '05: Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing. Baltimore, MD,
USA. pp. 84-93.
Rivest, R.L., Shamir, A.
& Adleman, L. 1978. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM 21(2): 120-126.
Schnorr,
C.P., Fischlin, M., Koy, H. & May, A. 1997. Lattice attacks on GGH
Cryptosystem. Rump session of Crypto '97.
Serre, D.N. 2010. Matrices: Theory and Applications.
2nd ed. Heidelberg London: Springer-Verlag.
Shor,
P.W. 1994. Algorithms for quantum computation: Discrete logarithms and
factoring. 35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM, USA. pp. 124-134.
Yoshino, M. & Kunihiro, N. 2012.
Improving GGH cryptosystem for large error vector. Information Symposium on Information Theory
and its Applications (ISITA). pp. 416-420.
Zazali, H.H. &
Othman, W.A.M. 2012. Key exchange in Elliptic Curve Cryptography based on the
decomposition problem. Sains
Malaysiana 41(7): 907-910.
*Pengarang untuk surat-menyurat; email:
ma_asyraf@upm.edu.my
|