Sains Malaysiana 49(7)(2020): 1499-1508
http://dx.doi.org/10.17576/jsm-2020-4907-03
Effect
of Abscisic Acid on Growth and Physiology of Arabica Coffee Seedlings under
Water Deficit Condition
(Kesan Asid Absisik ke atas Pertumbuhan dan Fisiologi Anak Benih Kopi Arabica dalam Keadaan Kekurangan Air)
NGOC-THANG VU1,
JONG-MAN PARK2, IL-SOEP KIM2,
ANH-TUAN TRAN1 &
DONG-CHEOL JANG*2
1Faculty of Agronomy, Vietnam National University of Agriculture,
Hanoi, Vietnam
2Department of
Horticulture, Kangwon National University, Chuncheon 200-701, Korea
Diserahkan: 15 September 2019/Diterima: 13 Mac 2020
ABSTRACT
In this study, the effect of abscisic acid (ABA) on growth and
physiology of Arabica coffee seedlings under water deficit condition was investigated.
To examine the effect of ABA concentration on growth and physiology, six ABA concentrations (0, 10, 50, 100,
150, and 200 mgL-1) were applied by spraying once a day for three
days. Additionally, the effect of ABA on physiology of Arabica coffee seedlings under
water deficit condition was examined by using two concentrations (50 and 100 mgL-1)
compared to non-ABA (0 mgL-1). Foliar application of ABA decreased
the growth traits of coffee seedlings in all the ABA concentrations. However, no statically
significant difference was observed among the 0, 10, 50, and 100 mgL-1 treatments
with growth traits except for the leaf area. Foliar application of ABA
decreased the quantum efficiency of photosystem II (Fv/Fm) of Arabica coffee seedlings in watering condition.
However, there was no significant difference between 0 (control) and 10 mgL-1 of ABA or 50 and 100 mgL-1 or 150 and 200 mgL-1 of
ABA treatment with the Fv/Fm.
The application of ABA enhanced drought tolerance of coffee seedlings by increasing the leaf chlorophyll content, Fv/Fm and
relative water content in the leaf and reducing the relative ion leakage in the
Arabica coffee seedlings. The application of ABA increased the relative water
content in the soil and delayed the starting time of wilting point under water
deficit condition.
Keywords: Abscisic acid; coffee; growth; physiology; water stress
ABSTRAK
Dalam kajian ini, kesan asid absisik (ABA) terhadap pertumbuhan dan fisiologi anak benih kopi Arabica dalam keadaan kekurangan air telah dikaji. Bagi mengkaji kesan kepekatan ABA terhadap pertumbuhan dan fisiologi anak benih kopi ini, enam kepekatan ABA (0, 10, 50,
100, 150 dan 200 mgL-1) telah digunakan dengan penyemburan sekali sehari selama tiga hari. Selain itu, kesan ABA terhadap fisiologi anak benih kopi dalam keadaan kekurangan air telah dikaji menggunakan dua kepekatan (50 dan 100 mgL-1) dan dibandingkan dengan benih tiada-ABA
(0 mgL-1). Semburan daun ABA telah mengurangkan sifat pertumbuhan anak benih kopi pada semua kepekatan ABA. Walau bagaimanapun, tidak terdapat perbezaan yang signifikan secara statistik pada ciri pertumbuhan benih antara rawatan ABA 0, 10, 50 dan 100 mgL-1 kecuali pada kawasan daun. Semburan daun ABA menurunkan kecekapan kuantum fotosistem II (Fv / Fm) benih kopi Arabica yang diairkan. Walau bagaimanapun, tidak ada perbezaan yang signifikan antara kepekatan rawatan ABA 0 mgL-1 (kawalan) dan 10 mgL-1 atau 50 dan 100 mgL-1 atau 150 dan 200 mgL-1 dengan Fv/Fm. Penggunaan ABA telah meningkatkan ketahanan anak benih kopi terhadap kekeringan dengan meningkatkan kandungan klorofil, Fv/Fm dan kandungan air relatif di dalam daun, serta mengurangkan kebocoran ion relatif benih kopi Arabica. Penggunaan ABA juga telah meningkatkan kandungan air relatif di dalam tanah dan melambatkan waktu mula titik layu dalam keadaan kekurangan air.
Kata kunci: Asid absisik; fisiologi; ketegasan air; kopi; pertumbuhan
RUJUKAN
Agarwal, S., Sairam,
R.K., Srivatava, G.C., Tyagi,
A. & Meena, R.C. 2005. Role of ABA, salicylic acid, calcium and hydrogen
peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science 169(3): 559-570.
Alves, A.A.C. & Setter, T.L. 2000.
Response of cassava to water deficit: Leaf area growth and abscisic acid. Crop Science 40(1): 131-137.
Anbarasi, G., Bhagavathi, G., Vignesh, R.,
Srinivasan, M. & Somasundaram, S.T. 2015. Effect of exogenous abscisic acid
on growth and biochemical changes in the halophyte Suaeda maritima. Journal of Microbiology, Biotechnology and Food Science 4(5):
442-447.
Ashraf, M. 2010. Inducing drought
tolerance in plants: Some recent advances. Biotechnology
Advances 28: 169-183.
Bakhsh, I., Awan, I., Sadiq, M., Niamatullah, M., Zaman, K.U. & Aftab, M. 2011. Effect
of plant growth regulator application at different growth stages on the
economical yield potential of coarse rice (Oryza
sativa L.). Journal of Animal and Plant Sciences 21(3): 612-616.
Borel, C.,
Simonneau, T., This, D. & Tardieu, F. 1997. Stomatal
conductance and ABA concentration in the xylem sap of barley lines of
contrasting genetic origins. Australian
Journal Plant Physiology 24(5): 607-615.
Carrow, R.N. 1996. Drought avoidance characteristics of diverse tall
fescue cultivars. Crop Science 36(2):
371-377.
Cousson, A. 2009. Involvement of phospholipase C-independent
calcium-mediated abscisic acid signaling during Arabidopsis response to drought. Biologia Plantarum 53(1): 53-62.
DaMatta, F.M. & Ramalho, J.D.C. 2006.
Impacts of drought and temperature stress on coffee physiology and production:
A review. Brazilian Journal Plant of
Physiology 18(1): 55-81.
Farooq, U. & Bano,
A. 2006. Effects of abscisic acid and chlorocholine chloride on nodulation and biochemical
content of Vigna radiata L. under
water stress. Pakistan Journal Botany 38(5): 1511-1518.
Finkelstein, R.R., Gampala,
S.S.L. & Rock, C.D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14: 15-45.
Franks, P.J. & Farquhar, G.D.
2001. The effect of exogenous abscisic acid on stomatal development, stomatal
mechanics, and leaf gas exchange in Tradescantia virginiana. Plant
Physiology 125(2): 935-942.
Hala, E.M. & Ghada, S.M.I. 2009. The
role of abscisic acid in the response of two different wheat varieties to water
deficit. Zeitschrift fur Naturforsch C 64(1-2): 77-84.
Hoagland, D.R. & Arnon, D.I. 1950. The water-culture method for growing
plants without soil. California
Agricultural Experiment Station Circular 347: 1-32.
Jiang, Y. & Huang, B. 2002.
Protein alterations in tall fescue in response to drought stress and abscisic
acid. Crop Science 42(1): 202-207.
Larkindale, J. & Knight, M.K. 2002. Protection against heat
stress-induced oxidative damage in Arabidopsis involves calcium abscisic acid, ethylene, and salicylic acid. Plant Physiology 128(2): 682-695.
Leung, J. & Giraudat,
J. 1998. Abscisic acid signal transduction. Annual Review Plant Physiology and Plant Molecular Biology 49:
199-222.
Li, J., Wang, X.Q., Watson, M.B. & Assmann, S.M. 2000. Regulation of abscisic
acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287(5451): 300-303.
Li, X.J., Yang, M.F., Chen, H., Qu,
L.Q., Chen, F. & Shen, A.H. 2010. Abscisic acid pretreatment enhances salt
tolerance of rice seedlings: Proteomic evidence. Biochimica et Biophysica Acta 1804(4): 929-940.
Ludewig, M., Dorffling, K. & Seifert,
H. 1988. Abscisic acid and water transport in sunflowers. Planta 175(3): 325-333.
Lu, G.H., Ren, D.L., Wang, X.Q., Wu,
J.K. & Zhao, M.S. 2010. Evaluation on drought tolerance of maize hybrids in
China. Journal of Maize Sciences 2010(3): 20-24.
Munns, R. & Cramer, G.R. 1996. Is
coordination of leaf and root growth mediated by abscisic acid? Opinion. Plant and Soil 185(1): 33-49.
Pinheiro, H.A., DaMatta, F.M., Chaves,
A.R.M., Loureiro, M.E. & Ducatti, C. 2005.
Drought tolerance is associated with rooting depth and stomatal control of
water use in clones of Coffea canephora. Annals of Botany 96(1): 101-108.
Planes, M.D., Ninoles,
R., Rubio, L., Bissoli, G., Bueso,
E., Garcia-Sanchez, M.J., Alejandro, S., Gonzalez-Guzman, M., Hedrich, R., Rodriguez, P.L., Fernandez, J.A. &
Serrano, R. 2015. A mechanism of growth inhibition by abscisic acid in
germinating seeds of Arabidopsis
thaliana based on inhibition of plasma membrane H+-ATPase
and decreased cytosolic pH, K+, and anions. Journal of Experimental Botany 66(3): 813-825.
Pospisilova, J., Synkova,
H., Haisel, D. & Batkova,
P. 2009. Effect of abscisic acid on
photosynthetic parameters during ex vitro transfer of micro propagated
tobacco plantlets. Boilogia Plantarum 53(1): 11-20.
Pospısilova, J., Vagner, M., Malbeck, J., Travnıckova, A.
& Batkova, P. 2005. Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Boilogia Plantarum 49(4): 533-540.
Rajasekaran, L.R. & Blake, T.J. 1999. New plant growth regulators
protect photosynthesis and enhance growth under drought of jack pine seedlings. Journal of Plant Growth Regulation 18(4): 175-181.
Sewelam, N., Dowidar, S., Abo-Kassem, E.A.
& Sobhy, S. 2017. Study of the interactive
effects of calcium and abscisic acid on drought stressed Triticum aestivum seedlings. Egyptian Journal of Botany 57(7th International conference): 215-232.
Sharp, R.E., Wu, Y., Voetberg, G.S., Saab, I.N. & LeNoble,
M.E. 1994. Confirmation that abscisic acid accumulation is required for maize
primary root elongation at low water potentials. Journal of Experimental Botany 45(Special issue): 1743-1751.
Taylor, I.B., Burbidge, A. &
Thompson, A.J. 2000. Control of abscisic acid synthesis. Journal of Experimental Botany 51(350): 1563-1574.
Vu, N.T., Kang, H.M.,
Kim, Y.S., Choi, K.Y. & Kim, I.S. 2015. Growth, physiology and abiotic
stress response to abscisic acid in tomato seedlings. Horticulture, Environment, and Biotechnology 56(3): 294-304.
Wang, S.H., Sui, X.L., Hu, L.P., Sun,
J.L., Wei, Y.X. & Zhang, Z.X. 2010. Effects of exogenous abscisic acid
pre-treatment of cucumber (Cucumis
sativus) seeds on seedling growth and water-stress tolerance. New Zealand Journal of Crop and
Horticultural Science 38(1): 7-18.
Waterland, N.L., Finer, J.J. &
Jones, M.L. 2010. Abscisic acid applications decrease stomatal conductance and
delay wilting in drought-stressed chrysanthemums. HortTechnology 20(5): 896-901.
Wintgens, J.N. 2004. Coffee: Growing, Processing, Sustainable
Production. A
Guidebook for Growers, Processors, Traders, and Researchers. Weinhem: Wiley-VCH Verlag GmbH
& Co.
Zhang, J.H., Zhang, X.P. & Liang,
J.S. 1995. Exudation rate and hydraulic conductivity of maize roots are
enhanced by soil drying and abscisic acid treatment. New Phytologist 131(3): 329-336.
Zhao, M.G.,
Zhao, X., Wu, Y.X. & Zhang, L.X. 2007. Enhanced sensitivity to oxidative
stress in an Arabidopsis nitric oxide
synthase mutant. Journal of Plant
Physiology 164(6): 737-745.
*Pengarang untuk surat-menyurat; email: jdc@kangwon.ac.kr
|