Sains Malaysiana 49(7)(2020): 1585-1596

http://dx.doi.org/10.17576/jsm-2020-4907-11

 

Kinetic, Isotherm, and Possible Mechanism of Pb(II) Ion Adsorption onto Xanthated Neem (Azadirachta indica) Leaf Powder

(Kinetik, Isoterma dan Mekanisme Kemungkinan Penjerapan Ion Pb(II) ke atas Serbuk Daun Mambu (Azadirachta indica) Terxantat)

 

MARDHIAH ISMAIL1,2* & MEGAT AHMAD KAMAL MEGAT HANAFIAH1

 

1Faculty of Applied Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2Faculty of Applied Science, Universiti Teknologi MARA, 26400 Jengka, Pahang Darul Makmur, Malaysia

 

Diserahkan: 2 Ogos 2019/Diterima: 6 Mac 2020

 

ABSTRACT

Adsorption capacity is one of the concern parameters in synthesizing an adsorbent for wastewater treatment. In this research, a bio-sorbent prepared by treating neem leaf powder with a chelating agent; carbon di-sulphide (CS2) through xanthation reaction was synthesized. The effect of treating with ligand (CS2) will be investigate since ligand will bind to metal ion. Ligand or chelating agent can help in increasing the ability of adsorbent to bind a metal ion in an aqueous solution. The chemistry of adsorption of Pb(II) ion on xanthated neem leaf powder (XNL) was investigated by using batch adsorption study. The maximum adsorption capacity, 256.41 mg g-1 at 318 K was determined from isotherm study, obtained from Langmuir model. FTIR spectroscopy suggested that the adsorption of Pb(II) onto XNL could possibly occur through ion exchange, Van der Wall forces and ionic interaction.

Keywords: Adsorption; isotherm; mechanisms; neem leaf; xanthate

 

ABSTRAK

Kapasiti penjerapan adalah salah satu parameter yang menjadi penentu dalam menghasilkan penjerap bagi merawat air buangan. Dalam kajian ini, bio-penjerap yang dihasilkan dengan merawat serbuk daun mambu dengan karbon disulfida (CS2) melalui tindak balas xantatasi. Proses penjerapan ion Pb(II) oleh daun mambu xantat (XNL) telah dikaji menggunakan kajian penjerapan berperingkat. Kadar penjerapan maksimum ialah 256.41 mg g-1 diperoleh melalui kajian isoterma dengan menggunakan model Langmuir. Kajian spektroskopi FTIR mendapati penjerapan Pb(II) ke XNL berkemungkinan berlaku melalui pertukaran ion, ikatan Van der Wall dan interaksi ion.

Kata kunci: Daun mambu; isoterma; mekanisme; penjerapan; xantat

 

RUJUKAN

Behnamfard, A., Salarirad, M.M. & Vegliò, F. 2014. Removal of Zn(II) ions from aqueous solutions by ethyl xanthate impregnated activated carbons. Hydrometallurgy 144-145: 39-53. https://doi.org/10.1016/j.hydromet.2013.11.017.

Bhattacharyya, K.G. & Sharma, A. 2004. Adsorption of Pb(II) from aqueous solution by Azadirachta indica (neem) leaf powder. Journal of Hazardous Materials 113(1-3): 97-109. https://doi.org/10.1016/j.jhazmat.2004.05.034.

Bonde, J.P., Joffe, M., Apostoli, P., Dale, A., Kiss, P., Spano, M. & Caruso, F. 2002. Sperm count and chromatin structure in men exposed to inorganic lead: Lowest adverse effect levels. Occupational and Environmental Medicine 59(4): 234-242. https://doi.org/10.1136/oem.59.4.234.

Boyd, G.E., Adamson, A.W. & Myers, L.S. 1947. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. Journal of the American Chemical Society 69(11): 2836-2848. https://doi.org/10.1021/ja01203a066.

Dubinin, M.M., Zaverina, E.D. & Radushkevich, L.V. 1947. Sorption and structure of active carbons. I. Adsorption of organic vapors. Journal of Physical Chemistry 21: 1351-1362.

Gidlow, D.A. 2015. Lead toxicity. Occupational Medicine 65(5): 348-356. https://doi.org/10.1093/occmed/kqv018.

Han, R., Wang, Y., Zhao, X. & Xie, F. 2009. Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: Experiments and prediction of breakthrough curves. Desalination 245(1-3): 284-297. https://doi.org/10.1016/j.desal.2008.07.013.

Hanafiah, M.A.K.M., Wan Ngah, W.S., Zolkafly, S.H., Teong, L.C. & Majid, Z.A.A. 2012. Acid blue 25 adsorption on base treated Shorea dasyphylla sawdust: Kinetic, isotherm, thermodynamic and spectroscopic analysis. Journal of Environmental Sciences 24(2): 261-268. https://doi.org/10.1016/S1001-0742(11)60764-X.

Ho, Y.S. & McKay, G. 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research 34(3): 735-742. https://doi.org/10.1016/S0043-1354(99)00232-8.

Ho, Y.S. & McKay, G. 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection 76: 332-340.

Jiang, G.B., Lin, Z.T., Huang, X.Y., Zheng, Y.Q., Ren, C.C., Huang, C.K. & Huang, Z.J. 2012. Potential biosorbent based on sugarcane bagasse modified with tetraethylenepentamine for removal of eosin Y. International Journal of Biological Macromolecules 50(3): 707-712. https://doi.org/10.1016/j.ijbiomac.2011.12.030.

Júnior, O.K., Gurgel, L.V.A., de Freitas, R.P. & Gil, L.F. 2009. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers 77(3): 643-650. https://doi.org/10.1016/j.carbpol.2009.02.016.

Liang, S., Guo, X.Y., Feng, N.C. & Tian, Q.H. 2010. Effective removal of heavy metals from aqueous solutions by orange peel xanthate. Transactions of Nonferrous Metals Society of China 20: 187-191. https://doi.org/10.1016/S1003-6326(10)60037-4.

Liu, W.J., Zeng, F.X., Jiang, H. & Zhang, X.S. 2011. Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl2 activated EDTA. Chemical Engineering Journal 170(1): 21-28. https://doi.org/10.1016/j.cej.2011.03.020.

Miyoung, O. & Mandla, A.T. 2007. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water. Bioresources 2: 66-81.

Nasuha, N., Hameed, B.H. & Mohd Din, A.T. 2010. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Journal of Hazardous Materials 175(1-3): 126-132. https://doi.org/10.1016/j.jhazmat.2009.09.138.

Teixeira, R.N.P., Neto, V.O.S., Vicente, J.T., Oliveira, T.C., Melo, D.Q., Silva, M.A.A. & Nascimento, R.F. 2013. Study on the use of roasted barley powder for adsorption of Cu2+ ions in batch experiments and in fixed-bed columns. Bioresources 8: 3556-3573.

Tiwari, D., Mishra, S.P., Mishra, M. & Dubey, R.S. 1999. Biosorptive behaviour of mango (Mangifera indica) and neem (Azadirachta indica) bark for Hg2+, Cr3+ and Cd2+ toxic ions from aqueous solutions: A radiotracer study. Applied Radiation and Isotopes 50(4): 631-642.

Torres-Blancas, T., Roa-Morales, G., Fall, C., Barrera-Díaz, C., Ureña-Nuñez, F. & Pavón Silva, T.B. 2013. Improving lead sorption through chemical modification of de-oiled allspice husk by xanthate. Fuel 110: 4-11. https://doi.org/10.1016/j.fuel.2012.11.013.

Vigeh, M., Yokoyama, K., Kitamura, F., Afshinrokh, M., Beygi, A. & Niroomanesh, S. 2010. Early pregnancy blood lead and spontaneous abortion. Women Health 50(8): 756-766. https://doi.org/10.1080/03630242.2010.532760.

Wan Ngah, W.S., Hanafiah, M.A.K.M. & Yong, S.S. 2008. Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlorohydrin beads: Kinetics and isotherm studies. Colloids and Surfaces B: Biointerfaces 65(1): 18-24. https://doi.org/10.1016/j.colsurfb.2008.02.007.

Weng, C.H., Lin, Y.T. & Tzeng, T.W. 2009. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. Journal of Hazardous Materials 170(1): 417-424. https://doi.org/10.1016/j.jhazmat.2009.04.080.

Zhu, Y., Hu, J. & Wang, J. 2012. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials 221-222: 155-161. https://doi.org/10.1016/j.jhazmat.2012.04.026.

 

*Pengarang untuk surat-menyurat; email: marismael@uitm.edu.my


 
 

 

 

sebelumnya