Sains Malaysiana 49(7)(2020): 1697-1712

http://dx.doi.org/10.17576/jsm-2020-4907-20

 

Gold Nanoparticles Biosynthesized using Lignosus rhinocerotis Extracts: Comparative Evaluation of Biostatic and Cytotoxicity Effects

(Nanozarah Emas Biosintesis menggunakan Ekstrak Lignosus rhinocerotis: Penilaian Perbandingan Kesan Biostatik dan Kesitotoksikan)

 

AHMAD YASSER HAMDI NOR AZLAN1,2, HALIZA KATAS1*, NUR QAISARA JALLUDDIN1 & MOHD FAUZI MH BUSRA3

 

1Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

2Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur (Royal College of Medicine Perak), 3, Jalan Greentown, 30450 Ipoh, Perak Darul Ridzuan, Malaysia

 

3Tissue Engineering Centre, UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 18 Januari 2020/Diterima: 3 Mac 2020

 

ABSTRACT

Gold nanoparticles (AuNPs) are a unique class of nanomaterials applied in biomedical applications. Biological synthesis or biosynthesis of AuNPs offers advantages including simple and cost-effective method as well as non-toxic to human, making it superior to chemical synthesis. In this study, comparative evaluation was conducted for antimicrobial and cytotoxicity effects of chemically synthesized (Chem-AuNPs) and biosynthesized AuNPs (Bio-AuNPs). Chem- and Bio-AuNPs were produced using sodium citrate and L. rhinocerotis extracts, respectively. Different methods namely hot and cold-water extraction (HWE and CWE, respectively) were used to extract L. rhinocerotis sclerotium, a medicinal mushroom. Both types of nanoparticles were stabilized using chitosan (CS) and characterized for their physical characteristics, followed by determination of antibacterial and cytotoxicity effects in vitro. Formation of AuNPs exhibited surface plasmon resonance (SPR) band at 465-564 nm and 523-544 nm for Chem-AuNPs and Bio-AuNPs, respectively, as determined by UV-vis spectroscopy. CS-stabilized AuNPs had larger size of particles than non-stabilized ones, ranging from 200 to 500 nm. Both Chem- and Bio-AuNPs showed biostatic activity against Gram-positive bacteria (Bacillus sp. and Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). The cytotoxicity assay for 24 h showed higher cell viability for Bio-AuNPs than Chem-AuNPs, indicating relatively less toxicity of Bio-AuNPs. In conclusion, Bio-AuNPs using the mushroom extracts and CS provide opportunities for developing stable, safer, and eco-friendly nanoparticles with effective antibacterial properties for clinical applications.

Keywords: Antibacterial effect; cytotoxicity; green synthesis; metal nanoparticles; nanocomposites

 

ABSTRAK

Nanozarah emas (AuNPs) merupakan satu kelas bahan nano yang unik, digunakan dalam aplikasi bioperubatan. Sintesis secara biologi atau biosintesis AuNPs menawarkan kelebihan termasuk kaedah sintesis yang mudah dan kos-efektif serta tidak bertoksik kepada manusia, menjadikan kaedah ini lebih unggul berbanding sintesis kimia. Dalam kajian ini, penilaian secara perbandingan telah dilakukan untuk kesan antimikrob dan kesitotoksikan terhadap AuNPs yang dihasilkan secara kimia (Chem-AuNPs) dan biologi (Bio-AuNPs). Chem- dan Bio-AuNPs dihasilkan masing-masing menggunakan natrium sitrat dan ekstrak L. rhinocerotis. Kaedah berbeza iaitu pengekstrakan air panas dan sejuk (masing-masing diringkaskan sebagai HWE dan CWE) telah digunakan untuk mengekstrak sklerotium L. rhinocerotis iaitu sejenis cendawan bernilai perubatan. Kedua-dua jenis nanozarah ini telah distabilkan menggunakan kitosan (CS) dan ditentukan ciri-ciri fizikal nanozarah yang terhasil, diikuti dengan penentuan kesan antibakteria dan kesitotoksikan secara in vitro. Pembentukan AuNPs memperlihatkan jalur resonans plasmon permukaan (SPR) pada 465-564 nm dan 523-544 nm, masing-masing untuk Chem- dan Bio-AuNPs yang ditentukan menggunakan spektroskopi UV. AuNPs yang distabilkan oleh CS mempunyai saiz zarah yang lebih besar berbanding AuNPs yang tidak distabilkan, dengan saiz zarah antara 200 hingga 500 nm. Kedua-dua Chem- dan Bio-AuNPs menunjukkan kesan biostatik terhadap bakteria gram-positif (Bacillus sp. dan Staphylococcus aureus) dan bakteria gram-negatif (Pseudomonas aeruginosa dan Escherichia coli). Ujian kesitotoksikan selama 24 jam menunjukkan daya kehidupan sel yang lebih tinggi untuk Bio-AuNPs berbanding Chem-AuNPs, membuktikan Bio-AuNPs adalah kurang toksik secara relatif. Kesimpulannya, Bio-AuNPs yang dihasilkan menggunakan ekstrak cendawan dan CS menyediakan peluang untuk membangunkan nanozarah yang stabil, lebih selamat dan mesra alam dengan sifat antibakteria yang berkesan untuk aplikasi klinikal.

Kata kunci: Kerintangan antibiotik; kesitotoksikan; nanokomposit; nanozarah logam; sintesis hijau

 

RUJUKAN

Ahmed, S. & Ikram, S. 2015. Synthesis of gold nanoparticles using plant extract: An overview. Nano Research and Application 1(1): 1-6.

Ahmed, D.S., Mohammed, T.H., Risan, M.H., Najim, L.H., Mohammed, S.S., Yusop, R.M. & Yousif, E. 2019. Green synthesis of silver nanoparticles by plants extract. International Journal of Chemical and Process Engineering Research 6(1): 1-6.

Alaqad, K. & Saleh, T.A. 2016. Gold and silver nanoparticles: Synthesis methods, characterization routes and applications towards drugs. Journal of Environmental & Analytical Toxicology 6: 4.

Asharavani, P.V., Lianwu, Y. & Valiyaveettil, S. 2010. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing Zebrafish embryos. Nanotoxicology 5(1): 43-54.

Bhumkar, D.R., Joshi, H.M., Sastry, M. & Pokharkar, V.B. 2007. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research 24(8): 1415-1426.

Blando, J.D., Porcja, R.J. & Turpin, B.J. 2001. Issues in the quantitation of functional groups by FTIR spectroscopic analysis of impactor-collected aerosol samples. Aerosol Science and Technology 35(5): 899-908.

Bonardd, S., Schmidt, M., Saavedra-Torres, M., Leiva, A., Radic, D. & Saldías, C. 2016. Thermal and morphological behavior of chitosan/Peo blends containing gold nanoparticles: Experimental and theoretical studies. Carbohydrate Polymers 144: 315-329.

Cinteza, L., Scomoroscenco, C., Voicu, S., Nistor, C., Nitu, S., Trica, B., Jecu, M.L. & Petcu, C. 2018. Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials 8(10): 826.

Chahardoli, A., Karimi, N., Sadeghi, F. & Fattahi, A. 2017. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artificial Cells, Nanomedicine, and Biotechnology 46(3): 579-588. 

Chokriwal, A., Sharma, M.M. & Singh, A. 2014. Biological synthesis of nanoparticles using bacteria and their applications. American Journal of Pharmtech Research 4(6): 38-61.

Czechowska-Biskup, R., Rokita, B., Ulański, P., Rosiak, J.M., Chitin, A.O. & Derivatives, I. 2015. Preparation of gold nanoparticles stabilized by chitosan using irradiation and sonication methods. Progress on Chemistry and Application of Chitin and its Derivatives 20: 18-33.

Control for Disease and Prevention. 2019. Antibiotic Resistance Threats in the United States, 2019. Centres for Disease Control and Prevention, US Department of Health.

Devienne, K.F. & Raddi, M.S.G. 2002. Screening for antimicrobial activity of natural products using a microplate photometer. Brazilian Journal of Microbiology 33(2): 166-168.

Dubey, S.P., Lahtinen, M. & Sillanpää, M. 2010. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry 45(7): 1065-1071.

Eskandari-Nojedehi, M., Jafarizadeh-Malmiri, H. & Rahbar-Shahrouzi, J. 2017. Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: Physico-chemical characteristics and antifungal activity studies. Green Processing and Synthesis 7(1): 38-47. 

Esumi, K., Houdatsu, H. & Yoshimura, T.J.L. 2004. Antioxidant action by Gold-PAMAM dendrimer nanocomposites. Langmuir 20(7): 2536-2538.

Gurunathan, S., Han, J., Park, J.H. & Kim, J.H. 2014. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Research Letters 9(1): 248.

Harimurti, S., Rohiman, A., Sulthoni, M.A. & Idris, I. 2013. The effect of trisodium citrate concentration on the size of gold nanoparticles. Proceeding in International Conference on Electronics Technology and Industrial Development. pp. 282-284.

Huang, H. & Yang, X. 2004. Synthesis of chitosan-stabilized gold nanoparticles in the absence or presence of tripolyphosphate. Biomacromolecules 5(6): 2340-2346.

Hussain, M.A., Shah, A., Jantan, I., Shah, M.R., Tahir, M.N., Ahmad, R. & Bukhari, S.N.A. 2015. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles. International Journal of Nanomedicine 10: 2079-2088.

Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry 13(10): 2638-2650.

Ishak, N.I.A.M.S., Kamarudin, K. & Timmiati, S.N. 2019. Green synthesis of metal and metal oxide nanoparticles via plant extracts: An overview. Materials Express Research 6: 112004.

Kang, Y., Jung, J.Y., Cho, D., Kwon, O., Cheon, J. & Park, W. 2016. Antimicrobial silver chloride nanoparticles stabilized with chitosan oligomer for the healing of burns. Materials 9(4): 215.

Katas, H., Moden, N.Z., Lim, C.S., Celesistinus, T., Yee, C.J., Ganasan, P. & Abdalla, S.S.I. 2018. Biosynthesis and potential applications of silver and gold nanoparticles and their chitosan-based nanocomposites in nanomedicine. Journal of Nanotechnology 2018: Paper ID. 4290705.

Katas, H., Lim, C.S., Nor Azlan, A.Y.H., Buang, F. & Busra, M.F.M. 2019. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharmaceutical Journal 27(2): 283-292.

Kaviya, S. 2017. Rapid naked eye detection of arginine by pomegranate peel extract stabilized gold nanoparticles. Journal of King Saud University-Science 31(4): 864-868

Khan, A.U., Yuan, Q., Wei, Y., Khan, G.M., Khan, Z.U.H., Khan, S. & Khan, F.U. 2016. Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. Journal of Photochemistry and Photobiology B: Biology 162: 273-277.

Kiaie, N., Aghdam, R.M., Tafti, S.H. & Emami, S.H. 2016. Statistical optimization of chitosan nanoparticles as protein vehicles, using response surface methodology. Journal of Applied Biomaterials and Functional Materials 14(4): 413-422.

Koperuncholan, M. 2015. Bioreduction of chloroauric acid (Haucl4) for the synthesis of Gold Nanoparticles (Gnps): A special empathies of pharmacological activity. International Journal of Phytopharmacy 5(4): 72-80.

Lanh Le, T., Khieu Dinh, Q., Hoa Tran, T., Phong Nguyen, H., Le Hien Hoang, T. & Hien Nguyen, Q. 2014. Synthesis of water soluble chitosan stabilized gold nanoparticles and determination of uric acid. Advances in Natural Sciences: Nanoscience and Nanotechnology 5(2): 025014.

Mapala, K. & Pattabi, M. 2017. Mimosa pudica flower extract mediated green synthesis of gold nanoparticles. Nano World Journal 3(2): 44-50.

McBirney, S.E., Trinh, K., Wong-Beringer, A. & Armani, A.M. 2016. Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates. Biomedical Optics Express 7(10): 4034-4042.

Mohan, C.O., Gunasekaran, S. & Ravishankar, C.N. 2019. Chitosan-capped gold nanoparticles for indicating temperature abuse in frozen stored products. npj Science Food 3(2): 1-6.

Mohan, J.C., Praveen, G., Chennazhi, K., Jayakumar, R. & Nair, S.V. 2013. Functionalised gold nanoparticles for selective induction of in vitro apoptosis among human cancer cell lines. Journal of Experimental Nanoscience 8(1): 32-45.

Mubarak Ali, D., Thajuddin, N., Jeganathan, K. & Gunasekaran, M. 2011. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces. B, Biointerfaces 85(2): 360-365.

Nayak, M.P. 2014. Green synthesis of gold nanoparticles using Solanus lycopersicum (TOMATO) aqueous extract. World Journal of Nano Science and Technology 3(2): 74-80.

Nayfeh, M.H. 2018. Micro and Nano Technologies Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trend. 1st edition. Amsterdam: Elsevier.

Nazirov, A., Pestov, A., Privar, Y., Ustinov, A., Modin, E. & Bratskaya, S. 2016. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan. Carbohydrate Polymers 151: 649-655.

Ngo, V.K.T., Nguyen, H.P.U., Huynh, T.P., Tran, N.N.P., Lam, Q.V. & Huynh, T.D. 2015. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. Coli O157: H7. Advances in Natural Sciences: Nanoscience and Nanotechnology 6(3): 1-6.

Noruzi, M. 2014. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess and Biosystems Engineering 38(1): 1-14.

Ojea-Jiménez, I., Romero, F.M.,  Bastús, N.G. & Puntes, V. 2010. Small gold nanoparticles synthesized with sodium citrate and heavy water: Insights into the reaction mechanism. Journal Physical Chemistry 114(4): 1800-1804.

Pantidos, N. & Horsfall, L.E. 2014. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine and Nanotechnology 5(5): 1-10.

Penders, J., Stolzoff, M., Hickey, D.J., Anderson, M. & Webster, T.J. 2017. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. International Journal of Medicine 12: 2457-2468.

Pernodet, N., Fang, X., Sun, Y., Bakhtina, A., Ramakrishnan, A., Sokolov, J., Ulman, A. & Rafailovich, M. 2006. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2(6): 766-777.

Philip, D. 2010. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 77(4): 807-810.

Rajan, A., Rajan, A.R. & Philip, D.O. 2017. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. Open Nano 2: 1-8.

Rao, Y., Inwati, G.K. & Singh, M. 2017. Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Future Science OA 3(4): FSO239.

Said, D.A., Ali, A.M., Khayyat, M.M., Boustimi, M., Loulou, M. & Seoudi, R. 2019. A study of the influence of plasmonic resonance of gold nanoparticle doped PEDOT: PSS on the performance of organic solar cells based on CuPc/C60. Heliyon 5(11): e02675.

Shahzadi, S., Zafar, N. & Sharif, R. 2018. Antibacterial Activity of Metallic Nanoparticles: Bacterial Pathogenesis and Antibacterial Control. London: IntechOpen.

Shankar, S.S., Rai, A., Ahmad, A. & Sastry, M. 2004. Rapid synthesis of Au, Ag, and bimetallic Au Core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 275(2): 496-502.

Sulaiman, G.M., Mohammed, W.H., Marzoog, T.R., Al-Amiery, A.A.A., Kadhum, A.A.H. & Mohamad, A.B. 2013. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific Journal of Tropical Biomedicine 3(1): 58-63.

Song, J.Y., Jang, H.K. & Kim, B.S. 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process BioChemistry 44(10): 1133-1138.

Sykes, J.E. & Rankin, S.C. 2014. Isolation and Identification of Aerobic and Anaerobic Bacteria: Canine and Feline Infectious Diseases. California: Elsevier Inc.

Vijayakumar, S. & Ganesan, S. 2012. In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. Journal of Nanomaterials 2012: 1-9.

Wagers, K., Chui, T. & Adem, S. 2014. Effect of pH on the stability of gold nanoparticles and their application for melanine detection in infant formula. Journal of Applied Chemistry 7(8): 15-20.

Wali, M., Sajjad, A.S., Sumaira, S., Muhammad, N., Safia, H. & Muhammad, J. 2017. Green synthesis of gold nanoparticles and their characterizations using plant extract of Papaver somniferum. Nano Science Nano Technology 11(2): 1-8.

Wang, Y., Pitto-Barry, A., Habtemariam, A., Romero-Canelon, I., Sadler, P.J. & Barry, N.P.E. 2016. Nanoparticles of chitosan conjugated to organo-ruthenium complexes. Inorganic Chemistry Frontier 3(8): 1058-1064.

Ye, W., Leung, M.F., Xin, J., Kwong, T.L., Lee, D.K.L. & Li, P.J.P. 2005. Novel core-shell particles with poly (N-Butyl Acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 46(23): 10538-10543.

Zabetakis, K., Ghann, W.E., Kumar, S. & Daniel, M.C. 2012. Effect of high gold salt concentrations on the size and polydispersity of gold nanoparticles prepared by an extended Turkevich-Frens Method. Gold Bulletine 45(4): 203-211.

Zhao, L., Jiang, D., Cai, Y., Ji, X., Xie, R. & Yang, W. 2012. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 4(16): 5071-5076.

Zhou, Y., Kong, Y., Kundu, S., Cirillo, J.D. & Liang, H. 2012. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus calmette-guérin. Journal of Nanobiotechnology 10(1): 19.

Zhuang, Y., Liu, L., Wu, X., Tian, Y., Zhou, X., Xu, S., Xie, Z. & Ma, Y. 2018. Size and shape effect of gold nanoparticles in 'Far‐Field' surface plasmon resonance. Particle and Particle System Characterization 36(1800077): 1-8.

Zuber, A., Purdey, M., Schartner, E., Forbes, C., van der Hoek, B., Giles, D., Abell, A., Monro, T. & Ebendorff-Heidepriem, H. 2016. Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors and Actuators B: Chemical 227: 117-127. 

 

*Pengarang untuk surat menyurat; email: haliza.katas@ukm.edu.my

 

 

 

 

sebelumnya