Sains Malaysiana 49(7)(2020): 1745-1754
http://dx.doi.org/10.17576/jsm-2020-4907-24
Enhancement
of Characteristics of Nitrogen-Doped Graphene Composite Materials Prepared by
Ball Milling of Graphite with Melamine: Effect of Milling Speed and Material
Ratios
(Penambahbaikan Ciri-Ciri Bahan Komposit Nitrogen Terdop Grafin Menggunakan Kaedah Penggilingan Bola Campuran Grafit dan Melamin: Kesan Kelajuan Penggilingan dan Nisbah Bahan)
NURUL
AIN HUZAIFAH1, NORDIN SABLI1,2*, KOK KUAN YING3,
NUR UBAIDAH SAIDIN3 & HIKMAT S. HILAL4
1Department of Chemical and Environmental
Engineering, Faculty of
Engineering, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
2Institute of Advance Technology (ITMA), Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Malaysian Nuclear Agency, Bangi,
43000 Kajang, Selangor Darul Ehsan, Malaysia
4Semiconductor & Solar Energy Research
Laboratory, Department of Chemistry, An-Najah National University, Nablus, West
Bank, PO Box 7, Palestine
Diserahkan: 29 Oktober 2019/Diterima:
20 Mac 2020
ABSTRACT
Nitrogen-doped graphene has
been prepared using the ball milling method that is known to be eco-friendly,
scalable and economic. The parameters studied in the synthesis were the mass
ratio of starting materials (graphite and melamine) and speed of the ball
milling. To determine its structure and properties, the nitrogen-doped graphene
was characterized using Field Emission Scanning Electron Microscopy with Energy
Dispersive X-Ray (FESEM-EDX), RAMAN Spectroscopy and X-Ray Diffraction (XRD).
Based on FESEM-EDX analysis, the doped composite exhibited nitrogen content of
~3.5%. The nitrogen-doped graphene was examined as a replacement for platinum
catalysts in fuel cells. Different composite catalysts were evaluated using a
Rotating Disk Electrode (RDE) to test the Oxidation Reduction Reaction (ORR)
performance. Based on ORR performance comparison, the composite with highest performance
was then used to fabricate a Membrane Electrode Assembly (MEA). Testing on MEA
performance was conducted on a Fuel Cell Station, where Open Circuit Voltage (VOC)
of 0.14 V was obtained. The results indicate that the ball milling method may
produce an efficient nitrogen-doped graphene MEA electrode from graphite and
melamine only. Compared with a platinum counterpart, the new composite material
electrode showed soundly high current-potential characteristics and fuel
conversion efficiency.
Keywords: Ball milling; fuel
cells; membrane electrode assembly (MEA); oxidation reduction reaction (ORR);
rotating disk electrode (RDE)
ABSTRAK
Tujuan kajian ini adalah untuk mensintesis nitrogen terdop grafinmenggunakan kaedah penggilingan bola yang mesra alam, boleh diskala dan ekonomi. Parameter yang dikaji dalam proses sintesis ialah nisbah jisim bahan mentah (grafit dan melamin) dan kelajuan penggilingan bola. Untuk menentukan struktur dan sifat sampel,
nitrogen terdop grafin telah dicirikan menggunakan alatan seperti FESEM-EDX, RAMAN Spectroscopy dan XRD. Berdasarkan keputusan analisis FESEM-EDX, komposit yang terdop nitrogen menunjukkan kandungan nitrogen sebanyak ~3.5%. Nitrogen terdop grafin dikaji sebagai pengganti kepada pemangkin platinum dalam sel bahan api. Komposit pemangkin yang berbeza dinilai menggunakan Cakera Elektrod Berputar (RDE) untuk menguji prestasi ORR. Berdasarkan keputusan perbandingan prestasi ORR, pemangkin yang terbaik akan digunakan untuk memfabrikasi Pemasangan Elektrod Membrane (MEA). Pemangkin ini juga menunjukkan bacaan voltan sebanyak 0.14 V (VOC) semasa diuji di Stesen Sel Bahan Api. Keputusan menunjukkan kaedah penggilingan bola mungkin boleh menghasilkan elektrod nitrogen terdop grafin MEA yang efisien daripada grafit dan melamin sahaja. Berbanding dengan platinum, bahan komposit elektrod yang baru ini menunjukkan ciri-ciri arus elektrik yang tinggi dan kecekapan penukaran bahan api.
Kata kunci: Cakera elektrod berputar (RDE); pemasangan elektrod membran (MEA); penggilingan bola, sel bahan api; tindak balas pengurangan pengoksidaan (ORR)
RUJUKAN
Allen, M.J.,
Tung, V.C. & Kaner, R.B. 2010. Honeycomb carbon:
A review of graphene. Chem. Rev. 110: 132-145.
Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R.
& Sham, T. 2011. Nitrogen doping effects on the structure of graphene. Applied
Surface Science 257(21): 9193-9198.
Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L. & Zettl,
A. 2009. Graphene at the edge: Stability and dynamics. Science 323(5922): 1705-1708.
He, C., Desai,
S., Brown, G. & Bollepalli, S. 2005. PEM fuel
cell catalysts: Cost, performance, and durability. Interface-Electrochemical
Society 14(3): 41-46.
Kurungot, S., Maraveedu,
U.S. & Ramadas, S. 2016. A process for the
preparation of nitrogen doped carbon nanohorns for
oxygen reduction electrocatalysis.
http://www.freepatentsonline.com/y2016/0240861.html.
Leon, V.,
Quintana, M., Herrero, M.A., Fierro, J.L., de la Hoz,
A., Prato, M. & Vazquez, E. 2011. Few-layer graphenes from ball-milling of graphite with melamine. Chemical Communications 47(39): 10936-10938.
Maddi, C., Bourquard, F., Barnier, V.,
Avila, J., Asensio, M.C., Tite,
T., Donnet, C. & Garrelie,
F. 2018. Nano-architecture of nitrogen-doped graphene films synthesized from a
solid CN source. Scientific Report 8(3247): 1-13.
Novoselov, K.S., Geim,
A.K., Morozov, S.V, Jiang, D., Zhang, Y., Dubonos,
S.V. & Firsov, A.A. 2004. Electric field effect
in atomically thin carbon films. Science 306: 666-669.
Olson, D.W.
2012. Graphite. USGS.
http://minerals.usgs.gov/minerals/pubs/country/2012/myb3-2012-my.pdf.
Qu, L., Liu,
Y., Baek, J.B. & Dai, L. 2010. Nitrogen-doped
graphene as efficient metal free electrocatalyst for oxygen reduction in fuel
cells. ACS Nano 4(3): 1321-1326.
Shams, S.S.,
Zhang, R. & Zhu, J. 2015. Graphene synthesis: A review. Materials
Science- Poland 33(3): 566-578.
Suprun, A.D. & Shmeleva, L.V. 2017. Features of the generalized dynamics
of quasiparticles in graphene. Nanoscale Research Letters 12(1): 1-9.
Wu, Z.S., Ren,
W., Xu, L., Li, F. & Cheng, H.M. 2011. Doped graphene sheets as anode
materials with superhigh rate and large capacity for lithium ion. ACS Nano 5(7): 5463-5471.
Xu, H., Ma, L.
& Jin, Z. 2018. Nitrogen-doped graphene:
Synthesis, characterizations and energy applications. Journal of Energy
Chemistry 27(1): 146-160.
Xue, Y., Chen, H., Qu, J. & Dai, L. 2015.
Nitrogen-doped graphene by ball-milling graphite with melamine for energy
conversion and storage. 2D Materials 2(4): 44001.
*Pengarang untuk surat-menyurat; email nordin_sab@upm.edu.my
|