| Sains
          Malaysiana 49(8)(2020): 1773-1785
  
 http://dx.doi.org/10.17576/jsm-2020-4908-02
            
           
             
           Quantitative Analysis of NaCl, NaOH, and
  β-phenylethylamine in Water using Ultraviolet Spectroscopy coupled with
            Partial Least Squares and Net Analyte Preprocessing
  
           (Analisis Kuantitatif NaCl, NaOH dan
  β-feniletilamina dalam Air menggunakan Spektroskopi Ultraungu Berganding
            dengan Kuasa Dua Terkecil Separa dan Prapemprosesan Analit Net)
  
 
             
           XIAOJUN
            TANG, ANGXIN TONG*, FENG ZHANG & BIN WANG
  
 
             
           State
            Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi
              710049, China
  
 
             
           Diserahkan: 29 November 2019/Diterima:
            1 April 2020
            
           
             
           ABSTRACT
            
           During the
            quantitative analysis of NaCl, NaOH, and β-phenylethylamine (PEA) in water
            samples, the highly overlapped spectra of NaCl, NaOH, and PEA resulted in poor
            concentration prediction. Meanwhile, the original spectral data of the natural
              water usually contain noise and interference spectra which will definitely affect the prediction accuracy. Hence, a new quantitative
              analysis method, which was based on ultraviolet (UV) spectroscopy coupled with partial least squares (PLS) and
                net analyte preprocessing (NAP), was developed. Firstly, the PLS regression models of the calibration set were constructed by using 15 single component samples, 9 binary component samples and
                  25 ternary component samples. In addition, the independent test set
                    was built up based on 34 samples to validate
                      the prediction performance of the PLS regression models. The relative errors of
                      prediction (REP) were both less than 3.1% for NaCl, NaOH, and PEA. And the correlation coefficients (Rpred2) of the PLS-1 and
                        PLS-2 models were both not less than 0.98 for NaCl, NaOH, and PEA. Finally, the PLS models coupled with NAP algorithm were successfully used to make the quantitative
                          determination of NaCl, NaOH, and PEA added into the
                            natural water, and the mean recovery rates of NaCl, NaOH, and PEA were
                            satisfactory (95-102%). Therefore, UV
                              spectroscopy coupled with PLS models and NAP algorithm can be considered as an effective method to determine the concentration of NaCl, NaOH and PEA in the natural water.
  
 
             
           Keywords: Interference spectra; natural water; net analyte
            preprocessing;
              partial least squares; ultraviolet spectroscopy
  
 
             
           ABSTRAK
            
           Semasa analisis kuantitatif
            NaCl, NaOH dan β-feniletilamina (PEA) dalam
              sampel air, spektrum NaCl, NaOH dan PEA yang sangat bertindih mengakibatkan
              ramalan kepekatan yang buruk. Sementara itu, data spektrum asal air semula jadi
              biasanya mengandungi spektrum hingar dan gangguan yang pasti akan mempengaruhi ketepatan ramalan. Oleh itu, kaedah analisis kuantitatif baru berdasarkan
                spektroskopi ultraungu (UV) yang berganding dengan kuasa dua terkecil separa
                (PLS) dan prapemprosesan analit net (NAP) telah dibentuk. Yang pertama, model
                regresi PLS daripada set penentukuran dihasilkan dengan menggunakan 15 sampel
                komponen tunggal, 9 sampel komponen dedua dan 25
                sampel komponen terner. Tambahan pula, set ujian bersandar dibina berdasarkan
                34 sampel untuk mengesahkan prestasi ramalan model regresi PLS. Ralat ramalan
                relatif (REP) adalah kurang daripada 3.1% bagi NaCl, NaOH dan PEA. Dan pekali
                korelasi (Rpred2) kedua-dua model PLS-1 dan PLS-2
                  tidak kurang daripada 0.98 bagi NaCl, NaOH dan PEA. Akhirnya, model PLS berganding
                    dengan algoritma NAP berjaya digunakan untuk membuat penentuan kuantitatif
                    NaCl, NaOH dan PEA yang ditambahkan ke dalam air semula jadi dan kadar pemulihan min NaCl, NaOH dan PEA adalah memuaskan
                    (95-102%). Oleh itu, spektroskopi UV yang berganding dengan model PLS dan
                    algoritma NAP dapat dianggap sebagai kaedah yang berkesan untuk menentukan
                    kepekatan NaCl, NaOH dan PEA dalam air semula jadi.
  
 
             
           Kata kunci:
            Air semula jadi; kuasa dua terkecil separa;
              prapemprosesan analit net; spektrum gangguan; spektroskopi ultraungu
              
 
             
           RUJUKAN
            
           Carre, E., Perot, J., Jauzein,
            V., Lin, L.M. & Lopez-Ferber,
              M. 2017. Estimation of water quality by UV/Vis
                spectrometry in the framework of treated wastewater reuse. Water Science and
                  Technology 76(3): 633-641.
  
 Corredor-Santamaría, W., Torres-Tabares, A.
  & Velasco-Santamaría, Y.M. 2019. Biochemical and histological alterations
            in Aequidens metae (Pisces, Cichlidae) and Astyanax gr.
              bimaculatus (Pisces, Characidae) as indicators of
            river pollution. Science of The Total Environment 692: 1234-1241.          
  
 Daniel, D., dos Santos, V.B., Vidal, D.T.R.
  & do Lago, C.L. 2015. Determination of biogenic amines in beer and wine
            by capillary electrophoresis-tandem mass spectrometry. Journal
              of Chromatography A 1416: 121-128.
  
           Goicoechea, H.C. & Olivieri, A.C. 2001.
            A comparison of orthogonal signal correction and net analyte preprocessing
            methods. Theoretical and experimental study. Chemometrics and Intelligent
              Laboratory Systems 56(2): 73-81.
  
           Guo, H.X., Huang,
            F.R., Li, Y.P., Fang, T., Zhu, S.Q. & Chen, Z.Q. 2016. Determination of proteins in human
              serum by near-infrared spectroscopy with partial least square
              analysis. Analytical Letters 49(18): 2964-2976.
  
 Hassaninejad-Darzi, S.K. &
            Torkamanzadeh, M. 2016. Simultaneous UV-Vis spectrophotometric quantification
            of ternary basic dye mixtures by partial least squares and artificial neural
            networks. Water Science and Technology 74(10): 2497-2504.
  
           Hegazy,
            M.A.M., Abbas,
              S.S. & Zaazaa,
                H.E. 2015. Resolution of overlapped quaternary
                  spectral bands by net analyte signal based methods: An
                  application to different combinations in tablets and capsules. Journal of
                    Analytical Chemistry 70(4): 450-458.
  
 Lee, S., Yoo, M. & Shin, D. 2015. The identification and
            quantification of biogenic amines in Korean turbid rice wine, Makgeolli by HPLC
            with mass spectrometry detection. LWT-Food Science and
              Technology 62(1): 350-356.
  
           Li, J., Guan, R.F., Wei, X.M., Chen, J.C., Hu, Y.Q., Liu, D.H. & Ye, X.Q. 2018. Detection of ten biogenic amines in
            Chinese commercial soybean paste by HPLC. International Journal of Food
              Properties 21(1): 1344-1350.
  
           Li, X.Z., Zhou, J., Tang, H., Sun, L., Cao, X.M. & Zhang,
            X.S. 2020. Rapid determination of total
              nitrogen in aquaculture water based on ultraviolet spectroscopy. Spectroscopy
                and Spectral Analysis 40(1): 195-201.
  
 Liu, F., Du, L.H., Xu, W.Y., Wang, D.Y., Zhang,
            M.H., Zhu, Y.Z. & Xu, W.M. 2013. Production of tyramine by Enterococcus faecalis strains in
              water-boiled salted duck. Journal of Food Protection 76(5): 854-859.
  
 Liu, X.H. & Wang, L.L. 2015. Use of multivariate calibration
            models based on UV-Vis spectra for seawater quality monitoring in
            Tianjin Bohai Bay, China. Water Science and Technology 71(10):
            1444-1450.
  
           Lu, Y.Z., Du, C.W., Yu, C.B. & Zhou, J.M. 2015. Determination of nitrogen in
            rapeseed by fourier transform infrared photoacoustic
            spectroscopy and independent component analysis. Analytical Letters 48(7): 1150-1162.
  
           Mai, W., Zhang,
            J.F., Zhao, X.M., Li, Z. & Xu, Z.W. 2017.
              Partial least squares regression calibration of an
              ultraviolet-visible spectrophotometer for measurements of chemical oxygen
              demand in dye wastewater. Journal of Applied Spectroscopy 84(5):
              804-810.
  
 Moreira,
            A.M.D., de
              Oliveira, H.L., Allochio,
                J.F., Florez,
                  D.H.A., Borges,
                    M.M.C., Lacerda,
                      V., Romao, W. & Borges,
                        K.B. 2019. NBOMe compounds:
                          An overview about analytical methodologies aiming their determination in
                          biological matrices. TrAC-Trends in Analytical Chemistry 114: 260-277.
  
 Moreno-Martin,
            G., Leon-Gonzalez,
              M.E. & Madrid, Y. 2018. Simultaneous determination of the
                size and concentration of AgNPs in water samples by UV-vis
                spectrophotometry and chemometrics tools. Talanta 188: 393-403.
  
 Salameh,
            B.A., Al-Degs,
              Y.S., Abu
                Safieh, K.A. & AL-Zghool,
                  A.W. 2020. Novel application of multivariate
                    standard addition method based on net analyte signal for
                    quantification of artificial sweeteners in complex food matrices. Journal of
                      Food Measurement and Characterization 14(1): 78-87.
  
 Samkova,
            E., Dadakova,
              E. & Pelikanova,
                T. 2013. Changes in biogenic amine and
                  polyamine contents in smear-ripened cheeses during storage. European Food
                    Research and Technology 237(3): 309-314.
  
 Scavnicar,
            A., Rogelj, I., Kocar, D., Kose, S. & Pompe, M. 2018. Determination of biogenic amines in
              cheese by ion chromatography with tandem mass spectrometry
              detection. Journal of AOAC International 101(5): 1542-1547.
  
 Shao, P., Wang, J., Zhang,
            T.T. & Sun, P.L. 2015. Determination of starch
              adulteration in Ganoderma lucidum polysaccharide
              by near infrared reflectance spectroscopy with partial least squares algorithm. Current Topics in Nutraceutical Research 13(4): 181-187.
  
 Subedi, S. & Fox, T.R. 2016. Predicting Loblolly pine site index
            from soil properties using partial least-squares regression. Forest
              Science 62(4): 449-456.
  
           Tasev, K., Ivanova-Petropulos,
            V. & Stefova,
              M. 2017
                Ultra-performance liquid chromatography-triple quadruple mass spectrometry
                (UPLC-TQ/MS) for evaluation of biogenic amines in wine. Food Analytical
                  Methods 10(12): 4038-4048.
  
 Tyszka, A., Pikus, G., Dabrowa, K. &
            Jurczak, J. 2019. Late-stage functionalization of (R)-BINOL-based
            diazacoronands and their chiral recognition of alpha-phenylethylamine
            hydrochlorides. Journal of Organic Chemistry 84(10): 6502-6507.
  
           Wang, L., Xiong, Q., Guo, C.H., Li, M.L. & Pu, X.M. 2017. Ultraviolet spectroscopy combined
            with chemometrics for simultaneous quantitative determination of 2,4,6-trinitrotoluene and its degraded products in
            environmental water sample. Chinese Journal of Analytical
              Chemistry 45(5): 754-761.
  
           Wen, L.F., Zhang, N., Li, H.C., Huang, Q., Wu, X.R., Hao, X.Y., Wu, M.J., Ban, C.L. & Zhao, J.H. 2017. Ternary liquid-liquid equilibrium
            for mixtures of water plus (+/-)alpha-Phenylethylamine plus
            n-Hexane at T=298.2, 318.2, and 333.2 K. Journal of Chemical and Engineering
              Data 62(7): 1819-1824.
  
           Xia, L. 2017. Analysis
            of partial least squares modeling and multi-collinearity
            ability. Agro Food Industry Hi-Tech 28(1): 885-889.
  
           Yan, K., Yuan, Z.W., Goldberg, S., Gao, W., Ostermann, A., Xu, J.C., Zhang, F.S. & Elser,
            J. 2019. Phosphorus mitigation remains critical in water protection:
            A review and meta-analysis from one of China's most eutrophicated lakes. Science
              of The Total Environment 689: 1336-1347.
  
           Ye, S., Chen, X., Dong, D.M., Wang, J.J.,
            Wang, X.Q. & Wang, F.Y. 2018. Rapid determination of water COD
            using laser-induced breakdown spectroscopy coupled with partial least-squares and random forest. Analytical Methods 10(40): 4879-4885.
  
           Yu, L.M., Zhao, K.J., Wang, S.S., Wang, X.
  & Lu, B. 2018. Gas chromatography/mass spectrometry based
            metabolomic study in a murine model of irritable bowel syndrome. World
              Journal of Gastroenterology 24(8): 894-904.
  
           Zamora, R., Navarro, J.L. & Hidalgo,
            F.J. 2018. Structure-activity relationship (SAR) of phenolics for the
            inhibition of 2-phenylethylamine formation in model systems involving
            phenylalanine and the 13-hydroperoxide of linoleic acid. Journal of
              Agricultural and Food Chemistry 66(51): 13503-13512.
  
           Zappi, A., Maini, L., Galimberti,
            G., Caliandro,
              R. & Melucci,
                D. 2019. Quantifying API polymorphs in
                  formulations using X-ray powder diffraction and multivariate standard addition
                  method combined with net analyte signal analysis. European
                    Journal of Pharmaceutical Sciences 130: 36-43.
  
 Zhou, Z., Li, Y., Zhang, Q., Shi, X.Y., Wu, Z.S. & Qiao, Y.J. 2016. Comparison of ensemble strategies
            in online NIR for monitoring the extraction process of pericarpium citri
            reticulatae based on different variable selections. Planta Medica 82(1-2): 154-162.
  
           
             
           *Pengarang untuk
            surat-menyurat; email: tongangxin@stu.xjtu.edu.cn
  
 
          
             
            
   |